scholarly journals ABOUT REGULARIZATION OF SEVERELY ILL-POSED PROBLEMS BY STANDARD TIKHONOV'S METHOD WITH THE BALANCING PRINCIPLE

2014 ◽  
Vol 19 (2) ◽  
pp. 199-215 ◽  
Author(s):  
Sergei G. Solodky ◽  
Ganna L. Myleiko

In the present paper for a stable solution of severely ill-posed problems with perturbed input data, the standard Tikhonov method is applied, and the regularization parameter is chosen according to balancing principle. We establish that the approach provides the order of accuracy on the class of problems under consideration.

2017 ◽  
Vol 22 (3) ◽  
pp. 283-299
Author(s):  
Sergii G. Solodky ◽  
Ganna L. Myleiko ◽  
Evgeniya V. Semenova

In the article the authors developed two efficient algorithms for solving severely ill-posed problems such as Fredholm’s integral equations. The standard Tikhonov method is applied as a regularization. To select a regularization parameter we employ two different a posteriori rules, namely, discrepancy and balancing principles. It is established that proposed strategies not only achieved optimal order of accuracy on the class of problems under consideration, but also they are economical in the sense of used discrete information.


2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Santhosh George ◽  
Monnanda Erappa Shobha

Finite-dimensional realization of a Two-Step Newton-Tikhonov method is considered for obtaining a stable approximate solution to nonlinear ill-posed Hammerstein-type operator equations KF(x)=f. Here F:D(F)⊆X→X is nonlinear monotone operator, K:X→Y is a bounded linear operator, X is a real Hilbert space, and Y is a Hilbert space. The error analysis for this method is done under two general source conditions, the first one involves the operator K and the second one involves the Fréchet derivative of F at an initial approximation x0 of the the solution x̂: balancing principle of Pereverzev and Schock (2005) is employed in choosing the regularization parameter and order optimal error bounds are established. Numerical illustration is given to confirm the reliability of our approach.


2014 ◽  
Vol 12 (1) ◽  
Author(s):  
S. O. Hussein ◽  
D. Lesnic

<p class="p1">The determination of an unknown spacewice dependent force function acting on a vibrating string from over-specied Cauchy boundary data is investigated numerically using the boundary element method (BEM) combined with a regularized method of separating variables. This linear inverse problem is ill-posed since small errors in the input data cause large errors in the output force solution. Consequently, when the input data is contaminated with noise we use the Tikhonov regularization method in order to obtain a stable solution. The choice of the regularization parameter is based on the L-curve method. Numerical results show that the solution is accurate for exact data and stable for noisy data.</p>


2013 ◽  
Vol 43 (2) ◽  
pp. 99-123 ◽  
Author(s):  
Maha Mohamed Abdelazeem

Abstract The aim of this paper is to find a plausible and stable solution for the inverse geophysical magnetic problem. Most of the inverse problems in geophysics are considered as ill-posed ones. This is not necessarily due to complex geological situations, but it may arise because of ill-conditioned kernel matrix. To deal with such ill-conditioned matrix, one may truncate the most ill part as in truncated singular value decomposition method (TSVD). In such a method, the question will be where to truncate? In this paper, for comparison, we first try the adaptive pruning algorithm for the discrete L-curve criterion to estimate the regularization parameter for TSVD method. Linear constraints have been added to the ill-conditioned matrix. The same problem is then solved using a global optimizing and regularizing technique based on Parameterized Trust Region Sub-problem (PTRS). The criteria of such technique are to choose a trusted region of the solutions and then to find the satisfying minimum to the objective function. The ambiguity is controlled mainly by proper choosing the trust region. To overcome the natural decay in kernel with depth, a specific depth weighting function is used. A Matlab-based inversion code is implemented and tested on two synthetic total magnetic fields contaminated with different levels of noise to simulate natural fields. The results of PTRS are compared with those of TSVD with adaptive pruning L-curve. Such a comparison proves the high stability of the PTRS method in dealing with potential field problems. The capability of such technique has been further tested by applying it to real data from Saudi Arabia and Italy.


2010 ◽  
Vol 10 (4) ◽  
pp. 444-454 ◽  
Author(s):  
E.V. Semenova

AbstractThe paper considers a method for solving nonlinear ill-posed problems with monotone operators. The approach combines the Lavrentiev method, the fixedpoint method, and the balancing principle for selection of the regularization parameter. The method’s optimality has been proved for some set of smooth solutions. A test example proves the efficiency of the proposed method.


2013 ◽  
Vol 5 (06) ◽  
pp. 825-845 ◽  
Author(s):  
B. Tomas Johansson ◽  
Daniel Lesnic ◽  
Thomas Reeve

AbstractIn this paper, a meshless regularization method of fundamental solutions is proposed for a two-dimensional, two-phase linear inverse Stefan problem. The numerical implementation and analysis are challenging since one needs to handle composite materials in higher dimensions. Furthermore, the inverse Stefan problem is ill-posed since small errors in the input data cause large errors in the desired output solution. Therefore, regularization is necessary in order to obtain a stable solution. Numerical results for several benchmark test examples are presented and discussed.


2009 ◽  
Vol 14 (2) ◽  
pp. 187-198 ◽  
Author(s):  
Toomas Raus ◽  
Uno Hämarik

We propose a new a posteriori rule for choosing the regularization parameter α in (iterated) Tikhonov method for solving linear ill‐posed problems in Hilbert spaces. We assume that data are noisy but noise level δ is given. We prove that (iterated) Tikhonov approximation with proposed choice of α converges to the solution as δ → 0 and has order optimal error estimates. Under certain mild assumption the quasioptimality of proposed rule is also proved. Numerical examples show the advantage of the new rule over the monotone error rule, especially in case of rough δ.


Author(s):  
Ioannis K. Argyros ◽  
Santhosh George ◽  
P. Jidesh

We present a new iterative method which does not involve inversion of the operators for obtaining an approximate solution for the nonlinear ill-posed operator equationF(x)=y. The proposed method is a modified form of Tikhonov gradient (TIGRA) method considered by Ramlau (2003). The regularization parameter is chosen according to the balancing principle considered by Pereverzev and Schock (2005). The error estimate is derived under a general source condition and is of optimal order. Some numerical examples involving integral equations are also given in this paper.


2020 ◽  
Vol 18 (1) ◽  
pp. 1685-1697
Author(s):  
Zhenyu Zhao ◽  
Lei You ◽  
Zehong Meng

Abstract In this paper, a Cauchy problem for the Laplace equation is considered. We develop a modified Tikhonov regularization method based on Hermite expansion to deal with the ill posed-ness of the problem. The regularization parameter is determined by a discrepancy principle. For various smoothness conditions, the solution process of the method is uniform and the convergence rate can be obtained self-adaptively. Numerical tests are also carried out to verify the effectiveness of the method.


2020 ◽  
Vol 28 (5) ◽  
pp. 659-676
Author(s):  
Dinh Nho Hào ◽  
Nguyen Van Duc ◽  
Nguyen Van Thang ◽  
Nguyen Trung Thành

AbstractThe problem of determining the initial condition from noisy final observations in time-fractional parabolic equations is considered. This problem is well known to be ill-posed, and it is regularized by backward Sobolev-type equations. Error estimates of Hölder type are obtained with a priori and a posteriori regularization parameter choice rules. The proposed regularization method results in a stable noniterative numerical scheme. The theoretical error estimates are confirmed by numerical tests for one- and two-dimensional equations.


Sign in / Sign up

Export Citation Format

Share Document