scholarly journals THE POWER MUTH DISTRIBUTION∗

2017 ◽  
Vol 22 (2) ◽  
pp. 186-201 ◽  
Author(s):  
Pedro Jodra ◽  
Hector Wladimir Gomez ◽  
Maria Dolores Jimenez-Gamero ◽  
Maria Virtudes Alba-Fernandez

Muth introduced a probability distribution with application in reliability theory. We propose a new model from the Muth law. This paper studies its statistical properties, such as the computation of the moments, computer generation of pseudo-random data and the behavior of the failure rate function, among others. The estimation of parameters is carried out by the method of maximum likelihood and a Monte Carlo simulation study assesses the performance of this method. The practical usefulness of the new model is illustrated by means of two real data sets, showing that it may provide a better fit than other probability distributions.

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1226
Author(s):  
Inmaculada Barranco-Chamorro ◽  
Yuri A. Iriarte ◽  
Yolanda M. Gómez ◽  
Juan M. Astorga ◽  
Héctor W. Gómez

Specifying a proper statistical model to represent asymmetric lifetime data with high kurtosis is an open problem. In this paper, the three-parameter, modified, slashed, generalized Rayleigh family of distributions is proposed. Its structural properties are studied: stochastic representation, probability density function, hazard rate function, moments and estimation of parameters via maximum likelihood methods. As merits of our proposal, we highlight as particular cases a plethora of lifetime models, such as Rayleigh, Maxwell, half-normal and chi-square, among others, which are able to accommodate heavy tails. A simulation study and applications to real data sets are included to illustrate the use of our results.


Author(s):  
Fiaz Ahmad Bhatti ◽  
Gauss M. Cordeiro ◽  
Mustafa Ç. Korkmaz ◽  
G.G. Hamedani

We introduce a four-parameter lifetime model with flexible hazard rate called the Burr XII gamma (BXIIG) distribution.  We derive the BXIIG distribution from (i) the T-X family technique and (ii) nexus between the exponential and gamma variables. The failure rate function for the BXIIG distribution is flexible as it can accommodate various shapes such as increasing, decreasing, decreasing-increasing, increasing-decreasing-increasing, bathtub and modified bathtub.  Its density function can take shapes such as exponential, J, reverse-J, left-skewed, right-skewed and symmetrical. To illustrate the importance of the BXIIG distribution, we establish various mathematical properties such as random number generator, ordinary moments, generating function, conditional moments, density functions of record values, reliability measures and characterizations.  We address the maximum likelihood estimation for the parameters. We estimate the adequacy of the estimators via a simulation study. We consider applications to two real data sets to prove empirically the potentiality of the proposed model.


2021 ◽  
pp. 096228022110092
Author(s):  
Hormatollah Pourreza ◽  
Ezzatallah Baloui Jamkhaneh ◽  
Einolah Deiri

In this paper, we concentrate on the statistical properties of Gamma-X family of distributions. A special case of this family is the Gamma-Weibull distribution. Therefore, the statistical properties of Gamma-Weibull distribution as a sub-model of Gamma-X family are discussed such as moments, variance, skewness, kurtosis and Rényi entropy. Also, the parameters of the Gamma-Weibull distribution are estimated by the method of maximum likelihood. Some sub-models of the Gamma-X are investigated, including the cumulative distribution, probability density, survival and hazard functions. The Monte Carlo simulation study is conducted to assess the performances of these estimators. Finally, the adequacy of Gamma-Weibull distribution in data modeling is verified by the two clinical real data sets. Mathematics Subject Classification: 62E99; 62E15


Symmetry ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 57 ◽  
Author(s):  
Abhimanyu Singh Yadav ◽  
Hafida Goual ◽  
Refah Mohammed Alotaibi ◽  
Rezk H ◽  
M. Masoom Ali ◽  
...  

In this paper, we introduce a new univariate version of the Lomax model as well as a simple type copula-based construction via Morgenstern family and via Clayton copula for introducing a new bivariate and a multivariate type extension of the new model. The new density has a strong physical interpretation and can be a symmetric function and unimodal with a heavy tail with positive skewness. The new failure rate function can be “upside-down”, “decreasing” with many different shapes and “decreasing-constant”. Some mathematical and statistical properties of the new model are derived. The model parameters are estimated using different estimation methods. For comparing the estimation methods, Markov Chain Monte Carlo (MCMC) simulations are performed. The applicability of the new model is illustrated via four real data applications, these data sets are symmetric and right skewed. We constructed a modified Chi-Square goodness-of-fit test based on Nikulin-Rao-Robson test in the case of complete and censored sample for the new model. Different simulation studies are performed along applications on real data for validation propose.


Author(s):  
Rania Hassan Abd El Khaleq

We introduce a new continuous model with strong physical motivations and wide applications upon compounding the diecreate zero truncated Poisson model and a new continuous model called the Burr X Pareto type II distribution. Some of its mathematical and statistical properties are derived as well as four applications to real data sets are provided with detailes to illustrate the wide importance of the new model. We conclude that the new model is better than other nine competitive models via the four applications. Method of maximum likelihood is used to estimate the unknown parameters of the new model. The new model provide adequate Öts as compared to other related models in the four applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Muhammad Farooq ◽  
Qamruz zaman ◽  
Muhammad Ijaz ◽  
Said Farooq Shah ◽  
Mutua Kilai

In practice, the data sets with extreme values are possible in many fields such as engineering, lifetime analysis, business, and economics. A lot of probability distributions are derived and presented to increase the model flexibility in the presence of such values. The current study also focuses on investigations to derive a new probability model New Flexible Family (NFF) of distributions. The significance of NFF is carried out using the Weibull distribution called New Flexible Weibull distribution or in short NFW. Various mathematical properties of NFW have been discussed including the estimation of parameters and entropy measures. Two real data sets with extreme values and a simulation study have been conducted so as to delineate the importance of NFW. Furthermore, NFW is compared with other existing probability distributions; numerically, it has been observed that the new mechanism of producing the lifetime probability distributions plays a significant role in making predictions about the population than others using the data sets with extreme values.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 726
Author(s):  
Lamya A. Baharith ◽  
Wedad H. Aljuhani

This article presents a new method for generating distributions. This method combines two techniques—the transformed—transformer and alpha power transformation approaches—allowing for tremendous flexibility in the resulting distributions. The new approach is applied to introduce the alpha power Weibull—exponential distribution. The density of this distribution can take asymmetric and near-symmetric shapes. Various asymmetric shapes, such as decreasing, increasing, L-shaped, near-symmetrical, and right-skewed shapes, are observed for the related failure rate function, making it more tractable for many modeling applications. Some significant mathematical features of the suggested distribution are determined. Estimates of the unknown parameters of the proposed distribution are obtained using the maximum likelihood method. Furthermore, some numerical studies were carried out, in order to evaluate the estimation performance. Three practical datasets are considered to analyze the usefulness and flexibility of the introduced distribution. The proposed alpha power Weibull–exponential distribution can outperform other well-known distributions, showing its great adaptability in the context of real data analysis.


Stats ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 28-45
Author(s):  
Vasili B.V. Nagarjuna ◽  
R. Vishnu Vardhan ◽  
Christophe Chesneau

In this paper, a new five-parameter distribution is proposed using the functionalities of the Kumaraswamy generalized family of distributions and the features of the power Lomax distribution. It is named as Kumaraswamy generalized power Lomax distribution. In a first approach, we derive its main probability and reliability functions, with a visualization of its modeling behavior by considering different parameter combinations. As prime quality, the corresponding hazard rate function is very flexible; it possesses decreasing, increasing and inverted (upside-down) bathtub shapes. Also, decreasing-increasing-decreasing shapes are nicely observed. Some important characteristics of the Kumaraswamy generalized power Lomax distribution are derived, including moments, entropy measures and order statistics. The second approach is statistical. The maximum likelihood estimates of the parameters are described and a brief simulation study shows their effectiveness. Two real data sets are taken to show how the proposed distribution can be applied concretely; parameter estimates are obtained and fitting comparisons are performed with other well-established Lomax based distributions. The Kumaraswamy generalized power Lomax distribution turns out to be best by capturing fine details in the structure of the data considered.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1850
Author(s):  
Rashad A. R. Bantan ◽  
Farrukh Jamal ◽  
Christophe Chesneau ◽  
Mohammed Elgarhy

Unit distributions are commonly used in probability and statistics to describe useful quantities with values between 0 and 1, such as proportions, probabilities, and percentages. Some unit distributions are defined in a natural analytical manner, and the others are derived through the transformation of an existing distribution defined in a greater domain. In this article, we introduce the unit gamma/Gompertz distribution, founded on the inverse-exponential scheme and the gamma/Gompertz distribution. The gamma/Gompertz distribution is known to be a very flexible three-parameter lifetime distribution, and we aim to transpose this flexibility to the unit interval. First, we check this aspect with the analytical behavior of the primary functions. It is shown that the probability density function can be increasing, decreasing, “increasing-decreasing” and “decreasing-increasing”, with pliant asymmetric properties. On the other hand, the hazard rate function has monotonically increasing, decreasing, or constant shapes. We complete the theoretical part with some propositions on stochastic ordering, moments, quantiles, and the reliability coefficient. Practically, to estimate the model parameters from unit data, the maximum likelihood method is used. We present some simulation results to evaluate this method. Two applications using real data sets, one on trade shares and the other on flood levels, demonstrate the importance of the new model when compared to other unit models.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 464
Author(s):  
Victoriano García ◽  
María Martel-Escobar ◽  
F.J. Vázquez-Polo

This paper presents a three-parameter family of distributions which includes the common exponential and the Marshall–Olkin exponential as special cases. This distribution exhibits a monotone failure rate function, which makes it appealing for practitioners interested in reliability, and means it can be included in the catalogue of appropriate non-symmetric distributions to model these issues, such as the gamma and Weibull three-parameter families. Given the lack of symmetry of this kind of distribution, various statistical and reliability properties of this model are examined. Numerical examples based on real data reflect the suitable behaviour of this distribution for modelling purposes.


Sign in / Sign up

Export Citation Format

Share Document