scholarly journals DEVELOPMENT OF PLANAR ELECTRODES FOR REAL-TIME ELECTROPORATION / PLANARIŲJŲ ELEKTRODŲ MODELIS REALIOJO LAIKO ELEKTROPORACIJOS TYRIMAMS

2018 ◽  
Vol 10 (0) ◽  
pp. 1-4
Author(s):  
Paulius Butkus

In this paper the concept of planar electrodes for real-time electroporation on a microscope stage is presented and the structure is analyzed using finite element method (FEM) analysis. A multiparametric investigation of the chip topology is performed in COMSOL Multiphysics environment to define the configuration of electrodes, electric field distribution and other electroporation parameters to ensure a homogeneous cell exposure. Based on the simulation results, an optimal electrode configuration, which is suitable for the investigation of the permeabilization thresholds during electroporation, is proposed.

2018 ◽  
Vol 32 (34n36) ◽  
pp. 1840073
Author(s):  
Hui Li ◽  
Yi-Bo Jiang ◽  
Jian-Wen Cai

Azimuthal electromagnetic wave logging-while-drilling (LWD) technology can detect weak electromagnetic wave signal and realize real-time resistivity imaging. It has great values to reduce drilling cost and increase drilling rate. In this paper, self-adaptive hp finite element method (FEM) has been used to study the azimuthal resistivity LWD responses in different conditions. Numerical simulation results show that amplitude attenuation and phase shift of directional electromagnetic wave signals are closely related to induced magnetic field and azimuthal angle. The peak value and polarity of geological guidance signals can be used to distinguish reservoir interface and achieve real-time geosteering drilling. Numerical simulation results also show the accuracy of the self-adaptive hp FEM and provide physical interpretation of peak value and polarity of the geological guidance signals.


2016 ◽  
Vol 65 (2) ◽  
pp. 327-336 ◽  
Author(s):  
Krzysztof Stawicki ◽  
Beata Szuflitowska ◽  
Marcin Ziolkowski

Abstract In this paper we present the results of simulations of the Magnetic Induction Tomography (MIT) forward problem. Two complementary calculation techniques have been implemented and coupled, namely: the finite element method (applied in commercial software Comsol Multiphysics) and the second, algebraic manipulations on basic relationships of electromagnetism in Matlab. The developed combination saves a lot of time and makes a better use of the available computer resources.


Author(s):  
Nur Farhani Ambo ◽  
Hidayat Zainuddin ◽  
Muhammad Saufi Kamarudin ◽  
Jamaludin Mohd Wari ◽  
Ayuamira Zahari

<p>This paper describes the electric field behavior of air breakdown under various electrode configurations and gap length. By using COMSOL Multiphysics, a Finite Element Method (FEM) software, the values of maximum electric field can be determined based on the air breakdown voltage data obtained from the experiment under AC stress. The results show that R0.5-plane configuration provides a very high electric field upon breakdown, compared to R6-plane, R48-plane and plane-plane configurations. In addition, the comparison between the analytical and simulation results of maximum electrical field gives almost identical results for each electrode configuration except for R6-plane.</p>


2015 ◽  
Vol 785 ◽  
pp. 348-352 ◽  
Author(s):  
Nurul Ain Abdul Latiff ◽  
Hazlee Azil Illias ◽  
Ab Halim Abu Bakar

Leakage current is known to be directly related to the degree of degradation of arrester. Leakage current is commonly flow across arrester under non-conducting condition. In this work, a two-dimensional (2D) axial-symmetrical 11kV surge arrester model was developed and used to simulate the leakage current under normal condition. The influence of insulator shed widths, housing materials and sizes of ZnO in an 11kV ZnO surge arrester design on its leakage current was studied using finite element method (FEM) software, which is COMSOL Multiphysics. The simulation results show that leakage current is mostly affected by the sizes of the ZnO and material of the housing. From this work, an understanding on the leakage current behaviors in a ZnO surge arrester can be enhanced. This study may also help in improving the design of surge arresters in reducing leakage current.


2014 ◽  
Vol 511-512 ◽  
pp. 561-564
Author(s):  
Ji Bo Li ◽  
Wei Ning Ni ◽  
San Guo Li ◽  
Zu Yang Zhu

Pressure resistant performance of Measure While Drilling (MWD) microchip tracer to withstand the harsh downhole environment is one of the key issues of normal working. Therefore, it is an effective way to analyze pressure resistant performance of the tracer in the design phase. Compressive strength of the tracer was studied based on finite element method. Considering downhole complexity and working conditions during the processing of tracer roundness, material non-uniformity and other factors. In this study, researchers took sub-proportion failure criterion to determine the failure of tracer. Simulation results of two structures, with pin and without pin, show that both structures met the requirement of downhole compressive strength, and the structure with pin was better than the structure without pin. This study provides basis for downhole application of microchip tracers.


Author(s):  
Lasinta Ari Nendra Wibawa

Crane is one of the heavy equipment that is widely used in the industry. The crane functions as a tool for lifting heavy loads and moving them from one place to another vertically and horizontally. In the LAPAN Garut office, it is used for the rocket assembly process. The study investigates the design and analysis of von Mises stress of crane structure with a capacity of 10 tons using mild steel material. The investigation was carried out numerically using Autodesk Inventor Professional 2017. The simulation results showed the Crane structure had a von Mises stress, deformation, mass, and safety factor respectively 63.73 MPa; 2,173 mm; 1.508,53 kg; and 3.25.Keywords: autodesk inventor 2017; finite element method; mild steel; stress analysis; von Mises stressABSTRAKCrane merupakan salah satu alat berat yang banyak digunakan dalam suatu industri. Crane berfungsi sebagai alat untuk mengangkat beban berat dan memindahkannya dari satu tempat ke tempat lain secara vertikal maupun horisontal. Di LAPAN Garut, Crane digunakan untuk proses perakitan roket. Penelitian ini meneliti tentang perancangan dan analisis tegangan von Mises struktur Crane dengan kapasitas 10 Ton menggunakan material mild steel. Analisis dilakukan secara numerik dengan menggunakan perangkat lunak Autodesk Inventor Professional 2017. Hasil simulasi menunjukkan struktur Crane memiliki tegangan von Mises, deformasi, massa, dan factor keamanan berturut-turut sebesar 63,73 MPa; 2,173 mm; 1.508,53 kg; dan 3,25.


2011 ◽  
Vol 268-270 ◽  
pp. 412-417 ◽  
Author(s):  
Ferhat Tighilt

The voltage and electric field distribution in an arrester are very important for its long operation 15 kV with and without pollution. In order to clarify the influence of pollution severity conditions on metal oxide surge arrester, the finite element method (FEM) compilation of the voltage distribution in the ZnO column varistors under different pollution layer conductivity (200 μS, 70μS, 20μS) and clean was employed using the FEMLAB package.


2016 ◽  
Vol 64 (1) ◽  
pp. 7-13 ◽  
Author(s):  
Onic Islam Shuvo ◽  
Md Naimul Islam

One of the major problems with Electrical Impedance Tomography (EIT) is the lack of spatial sensitivity within the measured volume. In this paper, sensitivity distribution of the tetrapolar impedance measurement system was visualized considering a cylindrical phantom consisting of homogeneous and inhomogeneous medium. Previously, sensitivity distribution was analysed analytically only for the homogeneous medium considering simple geometries and the distribution was found to be complex1,2. However, for the inhomogeneous volume conductors sensitivity analysis needs to be done using finite element method (FEM). In this paper, the results of sensitivity analysis based on finite element method using COMSOL Multiphysics simulation software are presented. A cylindrical non-uniform, inhomogeneous phantom, which mimics the human upper arm, was chosen to do the experiments by varying different parameters of interest. A successful method for controlling the region of interest was found where the sensitivity was maximum. Refining the finite element mesh size and introducing multifrequency input current (up to 1 MHz) this simulation method can be further improved.Dhaka Univ. J. Sci. 64(1): 7-13, 2016 (January)


Sign in / Sign up

Export Citation Format

Share Document