scholarly journals OGLE-2015-BLG-0051/KMT-2015-BLG-0048LB: A GIANT PLANET ORBITING A LOW-MASS BULGE STAR DISCOVERED BY HIGH-CADENCE MICROLENSING SURVEYS

2016 ◽  
Vol 152 (4) ◽  
pp. 95 ◽  
Author(s):  
C. Han ◽  
A. Udalski ◽  
A. Gould ◽  
V. Bozza ◽  
Y. K. Jung ◽  
...  
Keyword(s):  
Low Mass ◽  
2018 ◽  
Vol 615 ◽  
pp. A175 ◽  
Author(s):  
D. Barbato ◽  
A. Sozzetti ◽  
S. Desidera ◽  
M. Damasso ◽  
A. S. Bonomo ◽  
...  

Context. The assessment of the frequency of planetary systems reproducing the solar system’s architecture is still an open problem in exoplanetary science. Detailed study of multiplicity and architecture is generally hampered by limitations in quality, temporal extension and observing strategy, causing difficulties in detecting low-mass inner planets in the presence of outer giant planets. Aims. We present the results of high-cadence and high-precision HARPS observations on 20 solar-type stars known to host a single long-period giant planet in order to search for additional inner companions and estimate the occurence rate fp of scaled solar system analogues – in other words, systems featuring lower-mass inner planets in the presence of long-period giant planets. Methods. We carried out combined fits of our HARPS data with literature radial velocities using differential evolution MCMC to refine the literature orbital solutions and search for additional inner planets. We then derived the survey detection limits to provide preliminary estimates of fp. Results. We generally find better constrained orbital parameters for the known planets than those found in the literature; significant updates can be especially appreciated on half of the selected planetary systems. While no additional inner planet is detected, we find evidence for previously unreported long-period massive companions in systems HD 50499 and HD 73267. We finally estimate the frequency of inner low mass (10–30 M⊕) planets in the presence of outer giant planets as fp < 9.84% for P < 150 days. Conclusions. Our preliminary estimate of fp is significantly lower than the literature values for similarly defined mass and period ranges; the lack of inner candidate planets found in our sample can also be seen as evidence corroborating the inwards-migration formation model for super-Earths and mini-Neptunes. Our results also underline the need for high-cadence and high-precision followup observations as the key to precisely determine the occurence of solar system analogues.


2019 ◽  
Vol 15 (S354) ◽  
pp. 384-391
Author(s):  
L. Doyle ◽  
G. Ramsay ◽  
J. G. Doyle ◽  
P. F. Wyper ◽  
E. Scullion ◽  
...  

AbstractWe report on our project to study the activity in both the Sun and low mass stars. Utilising high cadence, Hα observations of a filament eruption made using the CRISP spectropolarimeter mounted on the Swedish Solar Telescope has allowed us to determine 3D velocity maps of the event. To gain insight into the physical mechanism which drives the event we have qualitatively compared our observation to a 3D MHD reconnection model. Solar-type and low mass stars can be highly active producing flares with energies exceeding erg. Using K2 and TESS data we find no correlation between the number of flares and the rotation phase which is surprising. Our solar flare model can be used to aid our understanding of the origin of flares in other stars. By scaling up our solar model to replicate observed stellar flare energies, we investigate the conditions needed for such high energy flares.


Geosciences ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 289 ◽  
Author(s):  
Serena Benatti

Exoplanet research has shown an incessant growth since the first claim of a hot giant planet around a solar-like star in the mid-1990s. Today, the new facilities are working to spot the first habitable rocky planets around low-mass stars as a forerunner for the detection of the long-awaited Sun-Earth analog system. All the achievements in this field would not have been possible without the constant development of the technology and of new methods to detect more and more challenging planets. After the consolidation of a top-level instrumentation for high-resolution spectroscopy in the visible wavelength range, a huge effort is now dedicated to reaching the same precision and accuracy in the near-infrared. Actually, observations in this range present several advantages in the search for exoplanets around M dwarfs, known to be the most favorable targets to detect possible habitable planets. They are also characterized by intense stellar activity, which hampers planet detection, but its impact on the radial velocity modulation is mitigated in the infrared. Simultaneous observations in the visible and near-infrared ranges appear to be an even more powerful technique since they provide combined and complementary information, also useful for many other exoplanetary science cases.


2007 ◽  
Vol 3 (S249) ◽  
pp. 233-250 ◽  
Author(s):  
Sean N. Raymond

AbstractTerrestrial planets form in a series of dynamical steps from the solid component of circumstellar disks. First, km-sized planetesimals form likely via a combination of sticky collisions, turbulent concentration of solids, and gravitational collapse from micron-sized dust grains in the thin disk midplane. Second, planetesimals coalesce to form Moon- to Mars-sized protoplanets, also called “planetary embryos”. Finally, full-sized terrestrial planets accrete from protoplanets and planetesimals. This final stage of accretion lasts about 10-100 Myr and is strongly affected by gravitational perturbations from any gas giant planets, which are constrained to form more quickly, during the 1-10 Myr lifetime of the gaseous component of the disk. It is during this final stage that the bulk compositions and volatile (e.g., water) contents of terrestrial planets are set, depending on their feeding zones and the amount of radial mixing that occurs. The main factors that influence terrestrial planet formation are the mass and surface density profile of the disk, and the perturbations from giant planets and binary companions if they exist. Simple accretion models predicts that low-mass stars should form small, dry planets in their habitable zones. The migration of a giant planet through a disk of rocky bodies does not completely impede terrestrial planet growth. Rather, “hot Jupiter” systems are likely to also contain exterior, very water-rich Earth-like planets, and also “hot Earths”, very close-in rocky planets. Roughly one third of the known systems of extra-solar (giant) planets could allow a terrestrial planet to form in the habitable zone.


1994 ◽  
Vol 147 ◽  
pp. 443-462
Author(s):  
W.B. Hubbard

AbstractAstrophysical objects of low mass, ranging from giant planets to extreme dwarf main-sequence stars, have a number of physical characteristics in common due to properties of their equations of state. Their luminosities are low (much less than the solar luminosity L⊙) and their evolutionary timescales are typically measured in Gyr. So far there are few observational examples of these objects, although they are undoubtedly numerous in the galaxy. The lower mass limit is set by the object’s ability to retain hydrogen during accumulation (about the mass of Saturn), while the upper mass limit is set by the lifting of electron degeneracy by high internal temperature. Objects confined within this broad range, which extends up to about 0.1 M⊙, are governed by the thermodynamics of liquid metallic hydrogen. In this paper, we discuss the implications of this feature of their interior structure for their radii, interior temperatures, thermonuclear energy generation rates, and luminosities. We conclude with a brief assessment of the confrontation between observations and theory in galactic clusters and in the solar system.


2010 ◽  
Vol 6 (S276) ◽  
pp. 95-100
Author(s):  
Ravit Helled ◽  
Peter Bodenheimer ◽  
Jack J. Lissauer

AbstractThe two current models for giant planet formation are core accretion and disk instability. We discuss the core masses and overall planetary enrichment in heavy elements predicted by the two formation models, and show that both models could lead to a large range of final compositions. For example, both can form giant planets with nearly stellar compositions. However, low-mass giant planets, enriched in heavy elements compared to their host stars, are more easily explained by the core accretion model. The final structure of the planets, i.e., the distribution of heavy elements, is not firmly constrained in either formation model.


2020 ◽  
Vol 633 ◽  
pp. A44 ◽  
Author(s):  
A. Grandjean ◽  
A.-M. Lagrange ◽  
M. Keppler ◽  
N. Meunier ◽  
L. Mignon ◽  
...  

Context. Young nearby stars are good candidates in the search for planets with both radial velocity (RV) and direct imaging techniques. This, in turn, allows for the computation of the giant planet occurrence rates at all separations. The RV search around young stars is a challenge as they are generally faster rotators than older stars of similar spectral types and they exhibit signatures of magnetic activity (spots) or pulsation in their RV time series. Specific analyses are necessary to characterize, and possibly correct for, this activity. Aims. Our aim is to search for planets around young nearby stars and to estimate the giant planet (GP) occurrence rates for periods up to 1000 days. Methods. We used the HARPS spectrograph on the 3.6 m telescope at La Silla Observatory to observe 89 A−M young (<600 Myr) stars. We used our SAFIR (Spectroscopic data via Analysis of the Fourier Interspectrum Radial velocities) software to compute the RV and other spectroscopic observables. Then, we computed the companion occurrence rates on this sample. Results. We confirm the binary nature of HD 177171, HD 181321 and HD 186704. We report the detection of a close low mass stellar companion for HIP 36985. No planetary companion was detected. We obtain upper limits on the GP (<13 MJup) and BD (∈ [13;80] MJup) occurrence rates based on 83 young stars for periods less than 1000 days, which are set, 2−2+3 and 1−1+3%.


2018 ◽  
Vol 613 ◽  
pp. A25 ◽  
Author(s):  
X. Bonfils ◽  
N. Astudillo-Defru ◽  
R. Díaz ◽  
J.-M. Almenara ◽  
T. Forveille ◽  
...  

The combination of high-contrast imaging and high-dispersion spectroscopy, which has successfully been use to detect the atmosphere of a giant planet, is one of the most promising potential probes of the atmosphere of Earth-size worlds. The forthcoming generation of extremely large telescopes (ELTs) may obtain sufficient contrast with this technique to detect O2 in the atmosphere of those worlds that orbit low-mass M dwarfs. This is strong motivation to carry out a census of planets around cool stars for which habitable zones can be resolved by ELTs, i.e. for M dwarfs within ~5 parsec. Our HARPS survey has been a major contributor to that sample of nearby planets. Here we report on our radial velocity observations of Ross 128 (Proxima Virginis, GJ447, HIP 57548), an M4 dwarf just 3.4 parsec away from our Sun. This source hosts an exo-Earth with a projected mass m sini = 1.35 M⊕ and an orbital period of 9.9 days. Ross 128 b receives less than 1.5 times as much flux as Earth from the Sun and its equilibrium ranges in temperature between 269 K for an Earth-like albedo and 213 K for a Venus-like albedo. Recent studies place it close to the inner edge of the conventional habitable zone. An 80-day long light curve from K2 campaign C01 demonstrates that Ross 128 b does not transit. Together with the All Sky Automated Survey (ASAS) photometry and spectroscopic activity indices, the K2 photometry shows that Ross 128 rotates slowly and has weak magnetic activity. In a habitability context, this makes survival of its atmosphere against erosion more likely. Ross 128 b is the second closest known exo-Earth, after Proxima Centauri b (1.3 parsec), and the closest temperate planet known around a quiet star. The 15 mas planet-star angular separation at maximum elongation will be resolved by ELTs (>3λ∕D) in the optical bands of O2.


2020 ◽  
Vol 497 (3) ◽  
pp. 3571-3580 ◽  
Author(s):  
S L Casewell ◽  
C Belardi ◽  
S G Parsons ◽  
S P Littlefair ◽  
I P Braker ◽  
...  

ABSTRACT We present the discovery of only the third brown dwarf known to eclipse a non-accreting white dwarf. Gaia parallax information and multicolour photometry confirm that the white dwarf is cool (9950 ± 150 K) and has a low mass (0.45 ± 0.05 M⊙), and spectra and light curves suggest the brown dwarf has a mass of 0.067 ± 0.006 M⊙ (70MJup) and a spectral type of L5 ± 1. The kinematics of the system show that the binary is likely to be a member of the thick disc and therefore at least 5-Gyr old. The high-cadence light curves show that the brown dwarf is inflated, making it the first brown dwarf in an eclipsing white dwarf-brown dwarf binary to be so.


Sign in / Sign up

Export Citation Format

Share Document