scholarly journals MERGERS AND STAR FORMATION: THE ENVIRONMENT AND STELLAR MASS GROWTH OF THE PROGENITORS OF ULTRA-MASSIVE GALAXIES SINCEZ= 2

2016 ◽  
Vol 816 (2) ◽  
pp. 86 ◽  
Author(s):  
Benedetta Vulcani ◽  
Danilo Marchesini ◽  
Gabriella De Lucia ◽  
Adam Muzzin ◽  
Mauro Stefanon ◽  
...  
2012 ◽  
Vol 10 (H16) ◽  
pp. 128-128
Author(s):  
Jamie R. Ownsworth ◽  
Christopher J. Conselice ◽  
Alice Mortlock ◽  
William G. Hartley ◽  
Fernando Buitrago

We investigate the resolved star formation properties of a sample of 45 massive galaxies (M* > 1011 M⊙) within a redshift range of 1.5 ⩽ z ⩽ 3 detected in the GOODS NICMOS Survey (Conselice et al. 2011), a HST H160-band imaging program. We derive the star formation rate as a function of radius using rest frame UV data from deep z850 ACS imaging. The star formation present at high redshift is then extrapolated to z = 0, and we examine the stellar mass produced in individual regions within each galaxy. We also construct new stellar mass profiles of the in situ stellar mass at high redshift from Sérsic fits to rest-frame optical, H160-band, data. We combine the two stellar mass profiles to produce an evolved stellar mass profile. We then fit a new Sérsic profile to the evolved profile, from which we examine what effect the resulting stellar mass distribution added via star formation has on the structure and size of each individual galaxy.


2020 ◽  
Vol 498 (2) ◽  
pp. 2114-2137 ◽  
Author(s):  
Nicholas A Henden ◽  
Ewald Puchwein ◽  
Debora Sijacki

ABSTRACT We study the gas and stellar mass content of galaxy groups and clusters in the fable suite of cosmological hydrodynamical simulations, including the evolution of their central brightest cluster galaxies (BCGs), satellite galaxies, and intracluster light (ICL). The total gas and stellar mass of fable clusters are in good agreement with observations and show negligible redshift evolution at fixed halo mass for $M_{500} \gtrsim 3 \times 10^{14} \, \mathrm{M}_{\odot }$ at z ≲ 1, in line with recent findings from Sunyaev–Zel’dovich (SZ)-selected cluster samples. Importantly, the simulations predict significant redshift evolution in these quantities in the low-mass ($M_{500} \sim 10^{14} \, \mathrm{M}_{\odot }$) regime, which will be testable with upcoming SZ surveys such as SPT-3G. Whilst the stellar masses of fable BCGs are in reasonable agreement with observations, the total stellar mass in satellite galaxies is lower than observed and the total mass in ICL is somewhat higher. This may be caused by enhanced tidal stripping of satellite galaxies due to their large sizes. BCGs are characterized by moderate stellar mass growth at z < 1 coincident with a late-time development of the ICL. The level of BCG mass growth is in good agreement with recent observations; however, we caution that the inferred growth depends sensitively on the mass definition. We further show that in situ star formation contributes more than half the mass of a BCG over its lifetime, the bulk of which is gained at z > 1 where star formation rates are highest. The stellar mass profiles of the BCG+ICL component are similar to observed profiles out to ∼100 kpc at z ≈ 0 and follow a close to power law shape out to several hundred kpc. We further demonstrate that the inferred size growth of BCGs can be severely biased by the choice of parametric model and the outer radius of the fit.


2020 ◽  
Vol 498 (4) ◽  
pp. 5581-5603
Author(s):  
Sabine Bellstedt ◽  
Aaron S G Robotham ◽  
Simon P Driver ◽  
Jessica E Thorne ◽  
Luke J M Davies ◽  
...  

ABSTRACT We apply the spectral energy distribution (SED) fitting code ProSpect to multiwavelength imaging for ∼7000 galaxies from the GAMA survey at z < 0.06, in order to extract their star formation histories. We combine a parametric description of the star formation history with a closed-box evolution of metallicity where the present-day gas-phase metallicity of the galaxy is a free parameter. We show with this approach that we are able to recover the observationally determined cosmic star formation history (CSFH), an indication that stars are being formed in the correct epoch of the Universe, on average, for the manner in which we are conducting SED fitting. We also show the contribution to the CSFH of galaxies of different present-day visual morphologies and stellar masses. Our analysis suggests that half of the mass in present-day elliptical galaxies was in place 11 Gyr ago. In other morphological types, the stellar mass formed later, up to 6 Gyr ago for present-day irregular galaxies. Similarly, the most massive galaxies in our sample were shown to have formed half their stellar mass by 11 Gyr ago, whereas the least massive galaxies reached this stage as late as 4 Gyr ago (the well-known effect of ‘galaxy downsizing’). Finally, our metallicity approach allows us to follow the average evolution in gas-phase metallicity for populations of galaxies and extract the evolution of the cosmic metal mass density in stars and in gas, producing results in broad agreement with independent, higher redshift observations of metal densities in the Universe.


2013 ◽  
Vol 434 (1) ◽  
pp. 209-221 ◽  
Author(s):  
Amanda E. Bauer ◽  
Andrew M. Hopkins ◽  
Madusha Gunawardhana ◽  
Edward N. Taylor ◽  
Ivan Baldry ◽  
...  

2019 ◽  
Vol 629 ◽  
pp. A37 ◽  
Author(s):  
M. S. Rosito ◽  
P. B. Tissera ◽  
S. E. Pedrosa ◽  
Y. Rosas-Guevara

Context. Despite the insights gained in the last few years, our knowledge about the formation and evolution scenario for the spheroid-dominated galaxies is still incomplete. New and more powerful cosmological simulations have been developed that together with more precise observations open the possibility of more detailed study of the formation of early-type galaxies (ETGs). Aims. The aim of this work is to analyse the assembly histories of ETGs in a Λ cold dark matter cosmology, focussing on the archeological approach given by the mass-growth histories. Methods. We inspected a sample of dispersion-dominated galaxies selected from the largest volume simulation of the EAGLE project. This simulation includes a variety of physical processes such as radiative cooling, star formation (SF), metal enrichment, and stellar and active galactic nucleus (AGN) feedback. The selected sample comprised 508 spheroid-dominated galaxies classified according to their dynamical properties. Their surface brightness profile, the fundamental relations, kinematic properties, and stellar-mass growth histories are estimated and analysed. The findings are confronted with recent observations. Results. The simulated ETGs are found to globally reproduce the fundamental relations of ellipticals. All of them have an inner disc component where residual younger stellar populations (SPs) are detected. A correlation between the inner-disc fraction and the bulge-to-total ratio is reported. We find a relation between kinematics and shape that implies that dispersion-dominated galaxies with low V/σL (where V is the average rotational velocity and σL the one dimensional velocity dispersion) tend to have ellipticity smaller than ∼0.5 and are dominated by old stars. On average, less massive galaxies host slightly younger stars. More massive spheroids show coeval SPs while for less massive galaxies (stellar masses lower than ∼1010 M⊙), there is a clear trend to have rejuvenated inner regions, showing an age gap between the inner and the outer regions up to ∼2 Gyr, in apparent contradiction with observational findings. We find evidences suggesting that both the existence of the disc components with SF activity in the inner region and the accretion of satellite galaxies in outer regions could contribute to the outside-in formation history in galaxies with low stellar mass. On the other hand, there are non-negligible uncertainties in the determination of the ages of old stars in observed galaxies. Stronger supernova (SN) feedback and/or the action of AGN feedback for galaxies with stellar masses lower than 1010 M⊙ could contribute to prevent the SF in the inner regions.


2012 ◽  
Vol 8 (S292) ◽  
pp. 289-289 ◽  
Author(s):  
M. Pannella ◽  
D. Elbaz ◽  
E. Daddi

AbstractWe quantitatively explore in a unbiased way the evolution of dust attenuation up to z ≈ 4 as a function of galaxy properties. We have used one of the deepest datasets available at present, in the GOODS-N field, to select a star forming galaxy sample and robustly measure galaxy redshifts, star formation rates, stellar masses and UV restframe properties. Our main results can be summarized as follows: i) we confirm that galaxy stellar mass is a main driver of UV dust attenuation in star forming galaxies: more massive galaxies are more dust attenuated than less massive ones; ii) strikingly, we find that the correlation does not evolve with redshift: the amount of dust attenuation is the same at all cosmic epochs for a fixed stellar mass; iii) this finding explains why and how the SFR–AUV relation evolves with redshift: the same amount of star formation is less attenuated at higher redshift because it is hosted in less massive galaxies; iv) combining our finding with results from line emission surveys, we confirm that line reddening is larger than continuum reddening, at least up to z ≈ 1.5; v) given the redshift evolution of the mass-metallicity relation, we predict that star forming galaxies at a fixed metal content are more attenuated at high redshift. Finally, we explored the correlation between UV dust attenuation and the spectral slope: vi) the correlation is evolving with redshift with star forming galaxies at lower redshift having redder spectra than higher redshift ones for the same amount of dust attenuation.


2016 ◽  
Vol 11 (S321) ◽  
pp. 273-273
Author(s):  
C. Catalán-Torrecilla ◽  
A. Gil de Paz ◽  
A. Castillo-Morales ◽  
J. Méndez-Abreu ◽  
S. Pascual ◽  
...  

AbstractExploring the spatial distribution of the star formation rate (SFR) in nearby galaxies is essential to understand their evolution through cosmic time. With this aim in mind, we use a representative sample that contains a variety of morphological types, the CALIFA Integral Field Spectroscopy (IFS) sample. Previous to this work, we have verified that our extinction-corrected Hα measurements successfully reproduce the values derived from other SFR tracers such as Hαobs + IR or UVobs + IR (Catalán-Torrecilla et al. 2015).Now, we go one step further applying 2-dimensional photometric decompositions (Méndez-Abreu et al. (2008), Méndez-Abreu et al. (2014)) over these datacubes. This method allows us to obtain the amount of SFR in the central part (bulge or nuclear source), the bar and the disk, separately. First, we determine the light coming from each component as the ratio between the luminosity in every component (bulge, bar or disk) and the total luminosity of the galaxy. Then, for each galaxy we multiply the IFS datacubes by these previous factors to recover the luminosity in each component. Finally, we derive the spectrum associated to each galaxy component integrating the spatial information in the weighted datacube using an elliptical aperture covering the whole galaxy.2D photometric decomposition applied over 3D datacubes will give us a more detailed understanding of the role that disks play in more massive galaxies. Knowing if the disks in more massive SF galaxies have on average a lower or higher level of star formation activity and how these results are affected by the presence of nuclear bars are still open questions that we can now solve. We describe the behavior of these components in the SFR vs. stellar mass diagram. In particular, we highlight the role of the disks and their contribution to both the integrated SFR for the whole galaxy and the SFR in the disk at different stellar masses in the SFR vs. stellar mass diagram together with their relative position to the star forming Main Sequence.


2016 ◽  
Vol 11 (S321) ◽  
pp. 327-329 ◽  
Author(s):  
Sandro Tacchella ◽  
C. Marcella Carollo ◽  
Avishai Dekel ◽  
Natascha Förster Schreiber ◽  
Alvio Renzini ◽  
...  

AbstractIn order to constrain – and understand – the growth of galaxies, we present a sample of ~ 30 galaxies at z ~ 2 with resolved distribution of stellar mass, star-formation rate, and dust attenuation on scales of ~ 1 kpc. We find that low- and intermediate-mass galaxies grow self-similarly, doubling their stellar mass in the centers and outskirts with the same pace. More massive galaxies (~ 1011 M⊙) have a reduced star-formation activity in their center: they grow mostly in the outskirts (inside-out quenching / formation). Similar trends are find in cosmological zoom-in simulations, highlighting that high stellar mass densities are formed in a gas-rich compaction phase. This nuclear ‘starburst’ phase is followed by a suppressed star-formation activity in the center, resulting in growth of the outskirts. All in all, we put forward that we witness at z ~ 2 the dissipative formation of z = 0 M* early-type galaxies.


2019 ◽  
Vol 486 (1) ◽  
pp. 1358-1376 ◽  
Author(s):  
Ignacio Ferreras ◽  
Anna Pasquali ◽  
Nor Pirzkal ◽  
John Pharo ◽  
Sangeeta Malhotra ◽  
...  

Abstract We constrain the stellar population properties of a sample of 52 massive galaxies – with stellar mass log (Ms/M⊙) ≳ 10.5 – over the redshift range 0.5 < z < 2 by use of observer-frame optical and near-infrared slitless spectra from Hubble Space Telescope’s ACS and WFC3 grisms. The deep exposures (∼100 ks) allow us to target individual spectra of massive galaxies to F160W = 22.5 AB. Our spectral fitting approach uses a set of six base models adapted to the redshift and spectral resolution of each observation, and fits the weights of the base models, including potential dust attenuation, via a Markov Chain Monte Carlo method. Our sample comprises a mixed distribution of quiescent (19) and star-forming galaxies (33). We quantify the width of the age distribution (Δt) that is found to dominate the variance of the retrieved parameters according to principal component analysis. The population parameters follow the expected trend towards older ages with increasing mass, and Δt appears to weakly anticorrelate with stellar mass, suggesting a more efficient star formation at the massive end. As expected, the redshift dependence of the relative stellar age (measured in units of the age of the Universe at the source) in the quiescent sample rejects the hypothesis of a single burst (aka monolithic collapse). Radial colour gradients within each galaxy are also explored, finding a wider scatter in the star-forming subsample, but no conclusive trend with respect to the population parameters.


2020 ◽  
Vol 15 (S359) ◽  
pp. 22-26
Author(s):  
Carlos Gómez-Guijarro

AbstractStarbursting dust-rich galaxies are capable of assembling large amounts of stellar mass very quickly. They have been proposed as progenitors of the population of compact massive quiescent galaxies at z ˜ 2. To test this connection, we present a detailed spatially-resolved study of the stars, dust, and stellar mass in a sample of six submillimeter-bright starburst galaxies at z ˜ 4.5. We found that the systems are undergoing minor mergers and the bulk star formation is located in extremely compact regions. On the other hand, optically-compact star forming galaxies have also been proposed as immediate progenitors of compact massive quiescent galaxies. Were they formed in slow secular processes or in rapid merger-driven starbursts? We explored the location of galaxies with respect to star-forming and structural relations and study the burstiness of star formation. Our results suggest that compact star-forming galaxies could be starbursts winding down and eventually becoming quiescent.


Sign in / Sign up

Export Citation Format

Share Document