DIRECT DETECTION OF THE HELICAL MAGNETIC FIELD GEOMETRY FROM 3D RECONSTRUCTION OF PROMINENCE KNOT TRAJECTORIES

2016 ◽  
Vol 817 (2) ◽  
pp. 123 ◽  
Author(s):  
Maciej Zapiór ◽  
David Martínez-Gómez
Galaxies ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 22
Author(s):  
Margo Aller ◽  
Philip Hughes ◽  
Hugh Aller ◽  
Talvikki Hovatta

We use multi-frequency linear polarization observations from the University of Michigan blazar program (UMRAO), in combination with radiative transfer simulations of emission from a relativistic jet, to investigate the time-dependent flow conditions, including magnetic field geometry, in an example blazar OT 081. We adopt a scenario incorporating relativistic shocks during flaring, and both ordered axial and helical magnetic field components and magnetic turbulence in the underlying flow; these constituents are consistent with the observed periods of ordered behavior in the polarization intermixed with stochastic variations. The simulations are able to reproduce the global features of the observed light curves, including amplitude and spectral evolution of the linear polarization, during four time periods spanning 25 years. From the simulations, we identify the signature of a weak-to-strong helical magnetic field on the polarization, but conclude that a dominant helical magnetic field is not consistent with the UMRAO polarization data. The modeling identifies time-dependent changes in the ratio of the ordered-to-turbulent magnetic field, and changes in the flow direction and Lorentz factor. These suggest the presence of jet-like structures within a broad envelope seen at different orientations.


2003 ◽  
Vol 214 ◽  
pp. 303-308
Author(s):  
Han-Shu Chu ◽  
L. B. Baath ◽  
Fu-Jun Zhang ◽  
R. E. Spencer

Magnetic Fields are the crucial and most important ingredient involved in the processes of various violent activities in Active Galactic Nuclei and other celestial bodies. The generally accepted 2-sided symmetric-jets model of active galactic nuclei (AGN) does not include the magnetic fields. We present here the first direct detection of helical magnetic field in AGN, and the first direct detection of ejection of large scale magnetic fields from AGN. (CME) 2. The annular (helical) magnetic field is responsible for the collimation of the jet (through Pinch Effect) and may be of crucial importance for extraction of black hole rotational energy. 3. The CMEs are responsible for sporadic ejection of jet components in AGN, while the general accepted 2-sided jets pertain to the quiescent Jets. 4. Observations show that the CME with Asymmetric Jets can explain many phenomena and much of the morphological diversities in AGN.


1977 ◽  
Vol 82 (32) ◽  
pp. 5187-5194 ◽  
Author(s):  
Juan G. Roederer ◽  
Mario H. Acuña ◽  
Norman F. Ness

2015 ◽  
Vol 455 (1) ◽  
pp. L52-L56 ◽  
Author(s):  
A. A. Vidotto ◽  
J.-F. Donati ◽  
M. Jardine ◽  
V. See ◽  
P. Petit ◽  
...  

2002 ◽  
Vol 54 (3) ◽  
pp. L39-L43 ◽  
Author(s):  
Keiichi Asada ◽  
Makoto Inoue ◽  
Yutaka Uchida ◽  
Seiji Kameno ◽  
Kenta Fujisawa ◽  
...  

2015 ◽  
Vol 81 (3) ◽  
Author(s):  
Sakineh Meshkani ◽  
Mahmood Ghoranneviss ◽  
Mansoureh Lafouti

For understanding the effect of resonant helical magnetic field (RHF) and bias on the edge plasma turbulent transport, the radial and poloidal electric field (Er, EP), poloidal and toroidal magnetic field (BP, Br) were detected by the Langmuir probe, magnetic probe and diamagnetic loop. The poloidal, toroidal and radial velocity (VP, Vr, Vt) can be determined from the electric and magnetic field. In the present work, we have investigated the effect of the magnitude of bias (Vbias = 200v, Vbias = 320v) on Er, EP, BP, Bt, VP, Vr, Vt. Moreover, we applied RHF with L = 2, L = 3 and L = 2 and 3 and investigate the effect of the helical windings radius on above parameters. Also, the experiment was repeated by applying the positive biasing potentials and RHF's simultaneously. The results show that by applying bias to the plasma at t = 15 msec at r/a = 0.9, Er, BP and Bt increase while EP decreases. The best modification occurs at Vbias = 200v. By applying RHF to the plasma, both the electric and magnetic field vary. Er reaches the highest in the presence of RHF with L = 3. The same results are obtained for BP, Bt, VP and Vt. While the inverse results are obtained for EP and Vr. Finally, RHF and bias are applied simultaneously to the plasma. With applied bias with Vbias = 200v and RHF with L = 2 and 3, we reach to the ideal circumstance. The same results obtain in the situation with Vbias = 320v and RHF with L = 2 and 3.


Sign in / Sign up

Export Citation Format

Share Document