A MODEL FOR THE DUST ENVELOPE OF THE SILICATE CARBON STAR IRAS 09425-6040

2016 ◽  
Vol 819 (1) ◽  
pp. 61 ◽  
Author(s):  
Kyung-Won Suh
Keyword(s):  
2021 ◽  
Vol 502 (1) ◽  
pp. L35-L39
Author(s):  
F Dell’Agli ◽  
E Marini ◽  
F D’Antona ◽  
P Ventura ◽  
M A T Groenewegen ◽  
...  

ABSTRACT Modelling dust formation in single stars evolving through the carbon-star stage of the asymptotic giant branch (AGB) reproduces well the mid-infrared colours and magnitudes of most of the C-rich sources in the Large Magellanic Cloud (LMC), apart from a small subset of extremely red objects (EROs). An analysis of the spectral energy distributions of EROs suggests the presence of large quantities of dust, which demand gas densities in the outflow significantly higher than expected from theoretical modelling. We propose that binary interaction mechanisms that involve common envelope (CE) evolution could be a possible explanation for these peculiar stars; the CE phase is favoured by the rapid growth of the stellar radius occurring after C/O overcomes unity. Our modelling of the dust provides results consistent with the observations for mass-loss rates $\dot{M} \sim 5\times 10^{-4}\,{\rm M}_{\odot }$ yr−1, a lower limit to the rapid loss of the envelope experienced in the CE phase. We propose that EROs could possibly hide binaries with orbital periods of about days and are likely to be responsible for a large fraction of the dust production rate in galaxies.


2019 ◽  
Vol 116 (29) ◽  
pp. 14471-14478 ◽  
Author(s):  
Tao Yang ◽  
Luke Bertels ◽  
Beni B. Dangi ◽  
Xiaohu Li ◽  
Martin Head-Gordon ◽  
...  

Complex organosilicon molecules are ubiquitous in the circumstellar envelope of the asymptotic giant branch (AGB) star IRC+10216, but their formation mechanisms have remained largely elusive until now. These processes are of fundamental importance in initiating a chain of chemical reactions leading eventually to the formation of organosilicon molecules—among them key precursors to silicon carbide grains—in the circumstellar shell contributing critically to the galactic carbon and silicon budgets with up to 80% of the ejected materials infused into the interstellar medium. Here we demonstrate via a combined experimental, computational, and modeling study that distinct chemistries in the inner and outer envelope of a carbon star can lead to the synthesis of circumstellar silicon tricarbide (c-SiC3) as observed in the circumstellar envelope of IRC+10216. Bimolecular reactions of electronically excited silicon atoms (Si(1D)) with allene (H2CCCH2) and methylacetylene (CH3CCH) initiate the formation of SiC3H2molecules in the inner envelope. Driven by the stellar wind to the outer envelope, subsequent photodissociation of the SiC3H2parent operates the synthesis of the c-SiC3daughter species via dehydrogenation. The facile route to silicon tricarbide via a single neutral–neutral reaction to a hydrogenated parent molecule followed by photochemical processing of this transient to a bare silicon–carbon molecule presents evidence for a shift in currently accepted views of the circumstellar organosilicon chemistry, and provides an explanation for the previously elusive origin of circumstellar organosilicon molecules that can be synthesized in carbon-rich, circumstellar environments.


1994 ◽  
Vol 140 ◽  
pp. 152-153
Author(s):  
Sun Kwok

As stars evolve up the asymptotic giant branch (AGB), they begin to lose mass at a high rate, and in the process they create extended circumstellar molecular envelopes. Since the transition from AGB to planetary nebula stages is of the order of 1000 yr, the remnant of such molecular envelopes should still be observable in pro to-planetary nebulae (PPN) and planetary nebulae (PN). Recent ground-based survey of cool IRAS sources have discovered ~30 candidates of PPN (Kwok 1992). These sources show the characteristic “double-peak” energy distribution. The cool component is due to the remnant of the AGB dust envelope, and the hot component represents the reddened photosphere. The fact that the two components are clearly separated suggests that the dust envelope is well detached from the photosphere. Radiative transfer model fits to the spectral energy distributions of PPN suggest a typical separation of ~1 arc sec between the dust envelope and the photosphere, and such “hole-in-the-middle” structure can be mapped by millimeter interferometry in CO.


Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 113
Author(s):  
Lars Mattsson ◽  
Christer Sandin

A significant fraction of new metals produced in stars enter the interstellar medium in the form of dust grains. Including dust and wind formation in stellar evolution models of late-stage low- and intermediate-mass stars provides a way to quantify their contribution to the cosmic dust component. In doing so, a correct physical description of dust formation is of course required, but also a reliable prescription for the mass-loss rate. Here, we present an improved model of dust-driven winds to be used in stellar evolution codes and insights from recent detailed numerical simulations of carbon-star winds including drift (decoupling of dust and gas). We also discuss future directions for further improvement.


1984 ◽  
Vol 211 (2) ◽  
pp. 331-337 ◽  
Author(s):  
M. W. Feast ◽  
P. A. Whitelock ◽  
R. M. Catchpole ◽  
G. Roberts ◽  
M. D. Overbeek
Keyword(s):  

2016 ◽  
Vol 591 ◽  
pp. A70 ◽  
Author(s):  
T. Khouri ◽  
M. Maercker ◽  
L. B. F. M. Waters ◽  
W. H. T. Vlemmings ◽  
P. Kervella ◽  
...  

2002 ◽  
Vol 124 (5) ◽  
pp. 2883-2887 ◽  
Author(s):  
Richard J. Rudy ◽  
Ray W. Russell ◽  
David K. Lynch ◽  
S. Mazuk ◽  
Catherine C. Venturini ◽  
...  
Keyword(s):  

1979 ◽  
Vol 189 (3) ◽  
pp. 455-458 ◽  
Author(s):  
A. R. Walker ◽  
P. A. T. Wild ◽  
B. B. P.
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document