scholarly journals Multi-orbital-phase and Multiband Characterization of Exoplanetary Atmospheres with Reflected Light Spectra

2020 ◽  
Vol 160 (5) ◽  
pp. 206
Author(s):  
Mario Damiano ◽  
Renyu Hu ◽  
Sergi R. Hildebrandt
2020 ◽  
Vol 633 ◽  
pp. A133 ◽  
Author(s):  
G. Frustagli ◽  
E. Poretti ◽  
T. Milbourne ◽  
L. Malavolta ◽  
A. Mortier ◽  
...  

Ultra-short period (USP) planets are a class of exoplanets with periods shorter than one day. The origin of this sub-population of planets is still unclear, with different formation scenarios highly dependent on the composition of the USP planets. A better understanding of this class of exoplanets will, therefore, require an increase in the sample of such planets that have accurate and precise masses and radii, which also includes estimates of the level of irradiation and information about possible companions. Here we report a detailed characterization of a USP planet around the solar-type star HD 80653 ≡EP 251279430 using the K2 light curve and 108 precise radial velocities obtained with the HARPS-N spectrograph, installed on the Telescopio Nazionale Galileo. From the K2 C16 data, we found one super-Earth planet (Rb = 1.613 ± 0.071 R⊕) transiting the star on a short-period orbit (Pb = 0.719573 ± 0.000021 d). From our radial velocity measurements, we constrained the mass of HD 80653 b to Mb = 5.60 ± 0.43 M⊕. We also detected a clear long-term trend in the radial velocity data. We derived the fundamental stellar parameters and determined a radius of R⋆ = 1.22 ± 0.01 R⊙ and mass of M⋆ = 1.18 ± 0.04 M⊙, suggesting that HD 80653 has an age of 2.7 ± 1.2 Gyr. The bulk density (ρb = 7.4 ± 1.1 g cm−3) of the planet is consistent with an Earth-like composition of rock and iron with no thick atmosphere. Our analysis of the K2 photometry also suggests hints of a shallow secondary eclipse with a depth of 8.1 ± 3.7 ppm. Flux variations along the orbital phase are consistent with zero. The most important contribution might come from the day-side thermal emission from the surface of the planet at T ~ 3480 K.


Author(s):  
Masaharu Hyodo ◽  
Osamu Matoba ◽  
Satoru Miyauchi ◽  
Shingo Saito
Keyword(s):  

2006 ◽  
Vol 44 (5) ◽  
pp. 398-410 ◽  
Author(s):  
Jure Klemenčič ◽  
Tadej Kokalj ◽  
Peter Mužič ◽  
Igor Grabec ◽  
Edvard Govekar

1987 ◽  
Vol 62 (10) ◽  
pp. 4248-4254 ◽  
Author(s):  
L. D. Partain ◽  
S. M. Dean ◽  
B. L. Berard ◽  
P. S. McLeod ◽  
L. M. Fraas ◽  
...  

2019 ◽  
Vol 622 ◽  
pp. A71 ◽  
Author(s):  
C. von Essen ◽  
M. Mallonn ◽  
L. Welbanks ◽  
N. Madhusudhan ◽  
A. Pinhas ◽  
...  

There has been increasing progress toward detailed characterization of exoplanetary atmospheres, in both observations and theoretical methods. Improvements in observational facilities and data reduction and analysis techniques are enabling increasingly higher quality spectra, especially from ground-based facilities. The high data quality also necessitates concomitant improvements in models required to interpret such data. In particular, the detection of trace species such as metal oxides has been challenging. Extremely irradiated exoplanets (~3000 K) are expected to show oxides with strong absorption signals in the optical. However, there are only a few hot Jupiters where such signatures have been reported. Here we aim to characterize the atmosphere of the ultra-hot Jupiter WASP-33 b using two primary transits taken 18 orbits apart. Our atmospheric retrieval, performed on the combined data sets, provides initial constraints on the atmospheric composition of WASP-33 b. We report a possible indication of aluminum oxide (AlO) at 3.3-σ significance. The data were obtained with the long slit OSIRIS spectrograph mounted at the 10-m Gran Telescopio Canarias. We cleaned the brightness variations from the light curves produced by stellar pulsations, and we determined the wavelength-dependent variability of the planetary radius caused by the atmospheric absorption of stellar light. A simultaneous fit to the two transit light curves allowed us to refine the transit parameters, and the common wavelength coverage between the two transits served to contrast our results. Future observations with HST as well as other large ground-based facilities will be able to further constrain the atmospheric chemical composition of the planet.


2019 ◽  
Vol 625 ◽  
pp. A107 ◽  
Author(s):  
G. Guilluy ◽  
A. Sozzetti ◽  
M. Brogi ◽  
A. S. Bonomo ◽  
P. Giacobbe ◽  
...  

Context. The study of exoplanetary atmospheres is key to understanding the differences between their physical, chemical, and dynamical processes. Until now, the bulk of atmospheric characterization analyses have been conducted on transiting planets. On a number of sufficiently bright targets, high-resolution spectroscopy (HRS) has also been successfully tested for nontransiting planets mainly by using spectrographs mounted on 8 and 10 m class ground-based telescopes. Aims. The aim of this analysis is to study the dayside of the nontransiting planet HD 102195b using the GIANO spectrograph mounted at the Telescopio Nazionale Galileo (TNG), and thereby demonstrate the feasibility of atmospheric characterization measurements. In particular, we wish to demonstrate the possibility of molecular detection with the HRS technique for nontransiting planets using 4 m class telescopes. Methods. Our data-analysis technique exploits the fact that the Doppler-shifted planetary signal changes on the order of many kilometers per second during the observations, in contrast with the telluric absorption which is stationary in wavelength. This allows us to effectively remove the contamination from telluric lines in the GIANO spectra while preserving the features of the planetary spectrum. The emission signal from the atmosphere of HD 102195b is then extracted by cross-correlating the residual GIANO spectra with models of the planetary atmosphere. Results. We detect molecular absorption from water vapor at the 4.4σ level of statistical significance. We also find convincing evidence for the presence of methane, which is detected at the 4.1σ level. This is the first detection of methane obtained with the HRS technique. The two molecules are detected with a combined significance of 5.3σ, at a semi-amplitude of the planet radial velocity KP = 128 ± 6 km s−1. We estimate a true planet mass of MP = 0.46 ± 0.03 MJ and constrain the orbital inclination in the range 72.5° < i < 84.79° (1σ). Our analysis indicates a noninverted atmosphere for HD 102195b. This is expected given the relatively low temperature of the planet, inefficient to keep TiO/VO in gas phase. Moreover, a comparison with theoretical model expectations corroborates our detection of methane, and a cursory confrontation with chemical model predictions published in the literature suggests that the detected methane and water signatures could be consistent with a low C/O ratio for HD 102195b. Finally, as HD 102195 is one to three magnitudes fainter in the K-band than the nontransiting systems studied until now with 8 m telescopes, our study opens up the possibility for atmospheric characterization of a larger sample of exoplanets.


1998 ◽  
Vol 44 (147) ◽  
pp. 326-332 ◽  
Author(s):  
Laurent Arnaud ◽  
Michel Gay ◽  
Jean-Marc Barnola ◽  
Paul Duval

AbstractA new technique for characterizing the structure of firn and bubbly ice is presented. This technique, based on observation of etched (sublimation) surfaces in coaxial reflected light, enables une to see simultaneously the pore network of the firn or bubbles in the ice and the crystal boundaries. At the same time, the main stages of image processing used to transform the initial photographs into clean binary images are described.


2017 ◽  
Vol 153 (3) ◽  
pp. 139 ◽  
Author(s):  
Peter Gao ◽  
Mark S. Marley ◽  
Kevin Zahnle ◽  
Tyler D. Robinson ◽  
Nikole K. Lewis

Sign in / Sign up

Export Citation Format

Share Document