scholarly journals A Mid-infrared Study of Directly Imaged Planetary-mass Companions Using Archival Spitzer/IRAC Images

2021 ◽  
Vol 163 (1) ◽  
pp. 36
Author(s):  
Raquel A. Martinez ◽  
Adam L. Kraus

Abstract The atmospheres and accretion disks of planetary-mass and substellar companions provide an unprecedented look into planet and moon formation processes, most notably the frequency and lifetime of circumplanetary disks. In our ongoing effort to leverage the extraordinary sensitivity of the Spitzer/Infrared Array Camera (IRAC) at 3.6, 4.5, 5.8, and 8.0 μm to study wide planetary-mass and substellar companions near the diffraction limit, we present point-spread function fitting photometry of archival Spitzer/IRAC images for nine stars (G0 to M4+M7) in nearby star-forming regions or stellar associations that host companions at separations of ρ = 1.″17–12.″33. We detect all system primaries in all four IRAC channels and recover eight low-mass companions in at least one IRAC channel for our sample, five of which have not been resolved previously in IRAC images. We measure nonphotospheric [3.6]–[8.0] colors for four of the system companions (DH Tau B, 2M0441 B, SR 12 c, and ROXs 42B b), confirming or discovering the presence of circumstellar or circum(sub)stellar disks. We detect fluxes consistent with photospheric emission for four other companions (AB Pic b, CHXR 73 b, 1RXS J1609 b, and HD 203030 b) that are unlikely to host disks. Combined with past detections of accretion or disk indicators, we determine the global disk frequency of young (<15 Myr) wide companions with masses near the deuterium-burning limit to be 56% ± 12%.

2013 ◽  
Vol 8 (S299) ◽  
pp. 230-231
Author(s):  
Alycia J. Weinberger ◽  
Alan P. Boss ◽  
Guillem Anglada-Escudé

AbstractWe present preliminary astrometric results aimed at understanding the lifetime of circumstellar disks and potential for planet formation. We have obtained parallaxes to stars in the TW Hydrae, Upper Scorpius, and Chamaeleon I stellar associations. These enable new estimates for the ages of the stars. We are also performing the Carnegie Astrometric Planet Search of nearby low mass stars for gas giant planets on wide orbits. We have our first candidate around a mature brown dwarf.


2007 ◽  
Vol 3 (S248) ◽  
pp. 553-559 ◽  
Author(s):  
E. A. Magnier ◽  
M. Liu ◽  
D. G. Monet ◽  
K. C. Chambers

AbstractThe Pan-STARRS pathfinding telescope PS1 will begin a major set of surveys starting in 2008, and lasting for 3.5 years. One of these, the PS1 3π Survey, will repeatedly observe the entire sky north of −30 degrees, visiting every position 12 times in each of 5 filters. With single-epoch astrometry of 10 milliarcseconds, these observations will yield parallaxes for stars within 100 pc and proper motions out to several hundred pc. The result will be an unprecedented view on nearby stellar populations and insight into the dynamical structure of the local portions of the Galaxy. One exciting science product will be a volume-limited sample of nearby low-mass objects including thousands of L dwarfs, hundreds of T dwarfs, and perhaps even cooler sub-stellar objects. Another project will use proper-motion measurements to improve the membership of nearby star forming regions.


2003 ◽  
Vol 211 ◽  
pp. 133-136
Author(s):  
Michael C. Liu

We present some results from a systematic survey for disks around spectroscopically identified young brown dwarfs and very low mass stars. We find that ≈75% of our sample show intrinsic IR excesses, indicative of circum(sub)stellar disks. The observed excesses are well-correlated with Hα emission, consistent with a common disk accretion origin. Because the excesses are modest, conventional analyses using only IR colors would have missed most of the sources with disks. In the same star-forming regions, we find that disks around brown dwarfs and T Tauri stars are contemporaneous; assuming coevality, this demonstrates that substellar disks are at least as long-lived as stellar disks. Altogether, the frequency and properties of circumstellar disks are similar from the stellar regime down to the substellar and planetary-mass regime. This offers compelling evidence of a common origin for most stars and brown dwarfs.


2017 ◽  
Vol 12 (S330) ◽  
pp. 309-312
Author(s):  
C. F. Manara ◽  
T. Prusti ◽  
J. Voirin ◽  
E. Zari

AbstractUnderstanding how young stars and their circumstellar disks form and evolve is key to explain how planets form. The evolution of the star and the disk is regulated by different processes, both internal to the system or related to their environment. The former include accretion of material onto the central star, wind emission, and photoevaporation of the disk due to high-energy radiation from the central star. These are best studied spectroscopically, and the distance to the star is a key parameter in all these studies. Here we present new estimates of the distance to a complex of nearby star-forming clouds obtained combining TGAS distances with measurement of extinction on the line of sight. Furthermore, we show how we plan to study the effects of the environment on the evolution of disks with Gaia, using a kinematic modelling code we have developed to model young star-forming regions.


1998 ◽  
Vol 11 (1) ◽  
pp. 423-424
Author(s):  
Motohide Tamura ◽  
Yoichi Itoh ◽  
Yumiko Oasa ◽  
Alan Tokunaga ◽  
Koji Sugitani

Abstract In order to tackle the problems of low-mass end of the initial mass function (IMF) in star-forming regions and the formation mechanisms of brown dwarfs, we have conducted deep infrared surveys of nearby molecular clouds. We have found a significant population of very low-luminosity sources with IR excesses in the Taurus cloud and the Chamaeleon cloud core regions whose extinction corrected J magnitudes are 3 to 8 mag fainter than those of typical T Tauri stars in the same cloud. Some of them are associated with even fainter companions. Follow-up IR spectroscopy has confirmed for the selected sources that their photospheric temperature is around 2000 to 3000 K. Thus, these very low-luminosity young stellar sources are most likely very low-mass T Tauri stars, and some of them might even be young brown dwarfs.


2002 ◽  
Vol 12 ◽  
pp. 143-145 ◽  
Author(s):  
Lee G. Mundy ◽  
Friedrich Wyrowski ◽  
Sarah Watt

Millimeter and submillimeter wavelength images of massive star-forming regions are uncovering the natal material distribution and revealing the complexities of their circumstellar environments on size scales from parsecs to 100’s of AU. Progress in these areas has been slower than for low-mass stars because massive stars are more distant, and because they are gregarious siblings with different evolutionary stages that can co-exist even within a core. Nevertheless, observational goals for the near future include the characterization of an early evolutionary sequence for massive stars, determination if the accretion process and formation sequence for massive stars is similar to that of low-mass stars, and understanding of the role of triggering events in massive star formation.


2018 ◽  
Vol 609 ◽  
pp. A125 ◽  
Author(s):  
M. Wienen ◽  
F. Wyrowski ◽  
K. M. Menten ◽  
J. S. Urquhart ◽  
C. M. Walmsley ◽  
...  

Context. The initial conditions of molecular clumps in which high-mass stars form are poorly understood. In particular, a more detailed study of the earliest evolutionary phases is needed. The APEX Telescope Large Area Survey of the whole inner Galactic disk at 870 μm, ATLASGAL, has therefore been conducted to discover high-mass star-forming regions at different evolutionary phases. Aims. We derive properties such as velocities, rotational temperatures, column densities, and abundances of a large sample of southern ATLASGAL clumps in the fourth quadrant. Methods. Using the Parkes telescope, we observed the NH3 (1, 1) to (3, 3) inversion transitions towards 354 dust clumps detected by ATLASGAL within a Galactic longitude range between 300° and 359° and a latitude within ± 1.5°. For a subsample of 289 sources, the N2H+ (1–0) line was measured with the Mopra telescope. Results. We measured a median NH3 (1, 1) line width of ~ 2 km s-1, rotational temperatures from 12 to 28 K with a mean of 18 K, and source-averaged NH3 abundances from 1.6 × 10-6 to 10-8. For a subsample with detected NH3 (2, 2) hyperfine components, we found that the commonly used method to compute the (2, 2) optical depth from the (1, 1) optical depth and the (2, 2) to (1, 1) main beam brightness temperature ratio leads to an underestimation of the rotational temperature and column density. A larger median virial parameter of ~ 1 is determined using the broader N2H+ line width than is estimated from the NH3 line width of ~ 0.5 with a general trend of a decreasing virial parameter with increasing gas mass. We obtain a rising NH3 (1, 1)/N2H+ line-width ratio with increasing rotational temperature. Conclusions. A comparison of NH3 line parameters of ATLASGAL clumps to cores in nearby molecular clouds reveals smaller velocity dispersions in low-mass than high-mass star-forming regions and a warmer surrounding of ATLASGAL clumps than the surrounding of low-mass cores. The NH3 (1, 1) inversion transition of 49% of the sources shows hyperfine structure anomalies. The intensity ratio of the outer hyperfine structure lines with a median of 1.27 ± 0.03 and a standard deviation of 0.45 is significantly higher than 1, while the intensity ratios of the inner satellites with a median of 0.9 ± 0.02 and standard deviation of 0.3 and the sum of the inner and outer hyperfine components with a median of 1.06 ± 0.02 and standard deviation of 0.37 are closer to 1.


2010 ◽  
Vol 718 (2) ◽  
pp. 610-619 ◽  
Author(s):  
Sergio Dzib ◽  
Laurent Loinard ◽  
Amy J. Mioduszewski ◽  
Andrew F. Boden ◽  
Luis F. Rodríguez ◽  
...  

2010 ◽  
Vol 6 (S270) ◽  
pp. 103-106
Author(s):  
R. Rao ◽  
J.-M. Girart ◽  
D. P. Marrone

AbstractThere have been a number of theoretical and computational models which state that magnetic fields play an important role in the process of star formation. Competing theories instead postulate that it is turbulence which is dominant and magnetic fields are weak. The recent installation of a polarimetry system at the Submillimeter Array (SMA) has enabled us to conduct observations that could potentially distinguish between the two theories. Some of the nearby low mass star forming regions show hour-glass shaped magnetic field structures that are consistent with theoretical models in which the magnetic field plays a dominant role. However, there are other similar regions where no significant polarization is detected. Future polarimetry observations made by the Submillimeter Array should be able to increase the sample of observed regions. These measurements will allow us to address observationally the important question of the role of magnetic fields and/or turbulence in the process of star formation.


Sign in / Sign up

Export Citation Format

Share Document