scholarly journals Photodesorption of Water Ice from Dust Grains and Thermal Desorption of Cometary Ices Studied by the INSIDE Experiment

2019 ◽  
Vol 880 (1) ◽  
pp. 12 ◽  
Author(s):  
Alexey Potapov ◽  
Cornelia Jäger ◽  
Thomas Henning
2019 ◽  
Vol 15 (S350) ◽  
pp. 370-371
Author(s):  
Henda Chaabouni ◽  
Stephan Diana ◽  
Thanh Nguyen

AbstractThermal desorption experiments of Formamide (NH2CHO) and methylamine (CH3NH2) were performed in LERMA-Cergy laboratory to determine the values of the desorption energies of formamide and methylamine from analogues of interstellar dust grain surfaces, and to understand their interaction with water ice. We found that more than 95 % of solid NH2CHO diffuses through the np-ASW ice surface towards the graphitic substrate, and is released into the gas phase with a desorption energy distribution Edes = (7460 – 9380) K, measured with the best-fit pre-exponential factor A=1018 s-1. Whereas, the desorption energy distribution of methylamine from the np-ASW ice surface (Edes =3850-8420 K) is measured with the best-fit pre-exponential factor A=1012s-1. A fraction of solid methylamine, of about 0.15 monolayer diffuses through the water ice surface towards the HOPG substrate, and desorbs later, with higher binding energies (5050-8420 K), which exceed that of the crystalline water ice (Edes =4930 K), calculated with the same pre-exponential factor A=1012 s-1.


2001 ◽  
Vol 327 (4) ◽  
pp. 1165-1172 ◽  
Author(s):  
H. J. Fraser ◽  
M. P. Collings ◽  
M. R. S. McCoustra ◽  
D. A. Williams

2021 ◽  
Vol 923 (2) ◽  
pp. 270
Author(s):  
Hauyu Baobab Liu ◽  
An-Li Tsai ◽  
Wen Ping Chen ◽  
Jin Zhong Liu ◽  
Xuan Zhang ◽  
...  

Abstract Previous observations have shown that the ≲10 au, ≳400 K hot inner disk of the archetypal accretion outburst young stellar object, FU Ori, is dominated by viscous heating. To constrain dust properties in this region, we have performed radio observations toward this disk using the Karl G. Jansky Very Large Array in 2020 June–July, September, and November. We also performed complementary optical photometric monitoring observations. We found that the dust thermal emission from the hot inner disk mid-plane of FU Ori has been approximately stationary and the maximum dust grain size is ≳1.6 mm in this region. If the hot inner disk of FU Ori, which is inward of the 150–170 K water snowline, is turbulent (e.g., corresponding to a Sunyaev & Shakura viscous α t ≳ 0.1), or if the actual maximum grain size is still larger than the lower limit we presently constrain, then as suggested by the recent analytical calculations and the laboratory measurements, water-ice-free dust grains may be stickier than water-ice-coated dust grains in protoplanetary disks. Additionally, we find that the free–free emission and the Johnson B- and V-band magnitudes of these binary stars were brightening in 2016–2020. The optical and radio variability might be related to the dynamically evolving protostellar- or disk-accretion activities. Our results highlight that the hot inner disks of outbursting objects are important laboratories for testing models of dust grain growth. Given the active nature of such systems, to robustly diagnose the maximum dust grain sizes, it is important to carry out coordinated multiwavelength radio observations.


2018 ◽  
Vol 612 ◽  
pp. A47 ◽  
Author(s):  
H. Chaabouni ◽  
S. Diana ◽  
T. Nguyen ◽  
F. Dulieu

Context. Formamide (NH2CHO) and methylamine (CH3NH2) are known to be the most abundant amine-containing molecules in many astrophysical environments. The presence of these molecules in the gas phase may result from thermal desorption of interstellar ices. Aims. The aim of this work is to determine the values of the desorption energies of formamide and methylamine from analogues of interstellar dust grain surfaces and to understand their interaction with water ice. Methods. Temperature programmed desorption (TPD) experiments of formamide and methylamine ices were performed in the sub-monolayer and monolayer regimes on graphite (HOPG) and non-porous amorphous solid water (np-ASW) ice surfaces at temperatures 40–240 K. The desorption energy distributions of these two molecules were calculated from TPD measurements using a set of independent Polanyi–Wigner equations. Results. The maximum of the desorption of formamide from both graphite and ASW ice surfaces occurs at 176 K after the desorption of H2O molecules, whereas the desorption profile of methylamine depends strongly on the substrate. Solid methylamine starts to desorb below 100 K from the graphite surface. Its desorption from the water ice surface occurs after 120 K and stops during the water ice sublimation around 150 K. It continues to desorb from the graphite surface at temperatures higher than160 K. Conclusions. More than 95% of solid NH2CHO diffuses through the np-ASW ice surface towards the graphitic substrate and is released into the gas phase with a desorption energy distribution Edes = 7460–9380 K, which is measured with the best-fit pre-exponential factor A = 1018 s−1. However, the desorption energy distribution of methylamine from the np-ASW ice surface (Edes = 3850–8420 K) is measured with the best-fit pre-exponential factor A = 1012 s−1. A fraction of solid methylamine monolayer of roughly 0.15 diffuses through the water ice surface towards the HOPG substrate. This small amount of methylamine desorbs later with higher binding energies (5050–8420 K) that exceed that of the crystalline water ice (Edes = 4930 K), which is calculated with the same pre-exponential factor A = 1012 s−1. The best wetting ability of methylamine compared to H2O molecules makes CH3NH2 molecules a refractory species for low coverage. Other binding energies of astrophysical relevant molecules are gathered and compared, but we could not link the chemical functional groups (amino, methyl, hydroxyl, and carbonyl) with the binding energy properties. Implications of these high binding energies are discussed.


2002 ◽  
Vol 12 ◽  
pp. 58-60
Author(s):  
Junko Takahashi

AbstractClassical molecular dynamics (MD) computer simulations were performed to investigate the whole fundamental processes of the H2formation reaction on the amorphous water ice as a model surface of icy mantles of dust grains. The product energy distribution and formation pumping mechanism of H2for med on dust grains were also examined.


2018 ◽  
Vol 617 ◽  
pp. L5 ◽  
Author(s):  
A. R. Poppe ◽  
M. Horányi

Context. Both Pluto and Triton possess thin, N2-dominated atmospheres controlled by sublimation of surface ices. Aims. We aim to constrain the influx and ablation of interplanetary dust grains into the atmospheres of both Pluto and Triton in order to estimate the rate at which oxygen-bearing species are introduced into both atmospheres. Methods. We use (i) an interplanetary dust dynamics model to calculate the flux and velocity distributions of interplanetary dust grains relevant for both Pluto and Triton and (ii) a model for the ablation of interplanetary dust grains in the atmospheres of both Pluto and Triton. We sum the individual ablation profiles over the incoming mass and velocity distributions of interplanetary dust grains in order to determine the vertical structure and net deposition of water to both atmospheres. Results. Our results show that <2% of silicate grains ablate at either Pluto or Triton while approximately 75% and >99% of water ice grains ablate at Pluto and Triton, respectively. From ice grains, we calculate net water influxes to Pluto and Triton of ~3.8 kg day−1 (8.5 × 103 H2O cm−2 s−1) and ~370 kg day−1 (6.2 × 105 H2O cm−2 s−1), respectively. The significant difference in total water deposition between Pluto and Triton is due to the presence of Triton within Neptune’s gravity well, which both enhances interplanetary dust particle (IDP) fluxes due to gravitational focusing and accelerates grains before entry into Triton’s atmosphere, thereby causing more efficient ablation. Conclusions. We conclude that water deposition from dust ablation plays only a minor role at Pluto due to its relatively low flux. At Triton, water deposition from IDPs is more significant and may play a role in the alteration of atmospheric and ionospheric chemistry. We also suggest that meteoric smoke and smaller, unablated grains may serve as condensation nuclei for the formation of hazes at both worlds.


1980 ◽  
Vol 90 ◽  
pp. 385-389
Author(s):  
Tadashi Mukai

The catastrophic disruption of interplanetary dust grains, including water-ice, obsidian and magnetite, by impinging solar cosmic rays is investigated. The disruption is caused by the stress wave emanating from the heated lattice atoms along the path of an impinging particle. We find that the disruption plays an important role in the mass loss rate of grains compared with that due to sublimation and sputtering by solar particles.


2000 ◽  
Vol 197 ◽  
pp. 293-302
Author(s):  
Junko Takahashi

Recent advances in theoretical simulations of grain-surface processes are reviewed. Classical molecular dynamics (MD) computer simulations were performed to investigate the whole process of H2 formation on icy mantles of interstellar dust grains within a single model. Amorphous water ice slabs were generated at 10 K and 70 K as a realistic model surface of dust grains, and then two incident H atoms were successively thrown onto the surface to reproduce the H2 formation process via H + H → H2 on the dust surface. The following fundamental processes were studied in detail; 1) the sticking of H atom onto the grain surface, 2) the diffusion of H atom on the surface, 3) the reaction of two H atoms on the surface, 4) the ejection of H2 from the surface. Then, the formation pumping mechanism of H2 and the chemical desorption mechanism of frozen CO molecules in the vicinity of H2 forming sites on dust grains were also studied.


Sign in / Sign up

Export Citation Format

Share Document