scholarly journals Orbital Evolution of Binary Black Holes in Active Galactic Nucleus Disks: A Disk Channel for Binary Black Hole Mergers?

2021 ◽  
Vol 911 (2) ◽  
pp. 124
Author(s):  
Ya-Ping Li ◽  
Adam M. Dempsey ◽  
Shengtai Li ◽  
Hui Li ◽  
Jiaru Li
2020 ◽  
Vol 498 (3) ◽  
pp. 4287-4294
Author(s):  
Jongsuk Hong ◽  
Abbas Askar ◽  
Mirek Giersz ◽  
Arkadiusz Hypki ◽  
Suk-Jin Yoon

ABSTRACT The dynamical formation of black hole binaries in globular clusters that merge due to gravitational waves occurs more frequently in higher stellar density. Meanwhile, the probability to form intermediate mass black holes (IMBHs) also increases with the density. To explore the impact of the formation and growth of IMBHs on the population of stellar mass black hole binaries from globular clusters, we analyse the existing large survey of Monte Carlo globular cluster simulation data (mocca-survey Database I). We show that the number of binary black hole mergers agrees with the prediction based on clusters’ initial properties when the IMBH mass is not massive enough or the IMBH seed forms at a later time. However, binary black hole formation and subsequent merger events are significantly reduced compared to the prediction when the present-day IMBH mass is more massive than ${\sim}10^4\, \rm M_{\odot }$ or the present-day IMBH mass exceeds about 1 per cent of cluster’s initial total mass. By examining the maximum black hole mass in the system at the moment of black hole binary escaping, we find that ∼90 per cent of the merging binary black holes escape before the formation and growth of the IMBH. Furthermore, large fraction of stellar mass black holes are merged into the IMBH or escape as single black holes from globular clusters in cases of massive IMBHs, which can lead to the significant underpopulation of binary black holes merging with gravitational waves by a factor of 2 depending on the clusters’ initial distributions.


2019 ◽  
Vol 490 (4) ◽  
pp. 5210-5216 ◽  
Author(s):  
Isobel M Romero-Shaw ◽  
Paul D Lasky ◽  
Eric Thrane

ABSTRACT Binary black holes are thought to form primarily via two channels: isolated evolution and dynamical formation. The component masses, spins, and eccentricity of a binary black hole system provide clues to its formation history. We focus on eccentricity, which can be a signature of dynamical formation. Employing the spin-aligned eccentric waveform model seobnre, we perform Bayesian inference to measure the eccentricity of binary black hole merger events in the first gravitational-wave transient catalogue of LIGO and Virgo. We find that all of these events are consistent with zero eccentricity. We set upper limits on eccentricity ranging from 0.02 to 0.05 with 90  per cent confidence at a reference frequency of $10\, {\rm Hz}$. These upper limits do not significantly constrain the fraction of LIGO–Virgo events formed dynamically in globular clusters, because only $\sim 5{{\ \rm per\ cent}}$ are expected to merge with measurable eccentricity. However, with the gravitational-wave transient catalogue set to expand dramatically over the coming months, it may soon be possible to significantly constrain the fraction of mergers taking place in globular clusters using eccentricity measurements.


2014 ◽  
Vol 12 (2) ◽  
pp. 159-166
Author(s):  
Predrag Jovanovic ◽  
Luka Popovic

Here we discuss the possible observational effects in the X-ray emission from two relativistic accretion disks in a supermassive binary black hole system. For that purpose we developed a model and performed numerical simulations of the X-ray radiation from a relativistic accretion disk around a supermassive black hole, based on the ray-tracing method in the Kerr metric, and applied it to the case of the close binary supermassive black holes. Our results indicate that the broad Fe K? line is a powerful tool for detecting such systems and studying their properties. The most favorable candidates for observational studies are the supermassive binary black holes in the galactic mergers during the phase when the orbital velocities of their components are very large and exceed several thousand kms -1.


2019 ◽  
Vol 621 ◽  
pp. L1 ◽  
Author(s):  
Zacharias Roupas ◽  
Demosthenes Kazanas

We show that binaries of stellar-mass black holes formed inside a young protoglobular cluster, can grow rapidly inside the cluster’s core by accretion of the intracluster gas, before the gas may be depleted from the core. A black hole with mass of the order of eight solar masses can grow to values of the order of thirty five solar masses in accordance with recent gravitational waves signals observed by LIGO. Due to the black hole mass increase, a binary may also harden. The growth of binary black holes in a dense protoglobular cluster through mass accretion indicates a potentially important formation and hardening channel.


2019 ◽  
Vol 15 (S356) ◽  
pp. 369-369
Author(s):  
Michael Kreter

AbstractBlazars are powered by super-massive black holes at their centers and are known for extreme variability on timescales from minutes to years. In case of a binary black hole system, this duality is traceable as periodic modulation of their MeV to GeV emission. So far, no high-significance periodicity has been found with standard approaches. We developed a method to search for periodic patterns in Fermi/LAT light curves, using information field theory (IFT). IFT is a formulation of Bayesian statistics in terms of fields. Bayesian statistics is ideal for the problem at hand since the data is incomplete, irregularly sampled and obeys non-Gaussian statistics such that common least-squares methods do not apply. We present a proof of principle of this method, analyzing a sample of promising binary black hole candidates like PG 1553 + 113 and Mrk 501.


2002 ◽  
Vol 17 (20) ◽  
pp. 2689-2693 ◽  
Author(s):  
ÉRIC GOURGOULHON ◽  
PHILIPPE GRANDCLÉMENT ◽  
SILVANO BONAZZOLA

Binary black hole systems in the pre-coalescence stage are numerically constructed by demanding that the associated spacetime admits a helical Killing vector. Comparison with third order post-Newtonian calculations indicates a rather good agreement until the innermost stable circular orbit.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Lang Liu ◽  
Øyvind Christiansen ◽  
Wen-Hong Ruan ◽  
Zong-Kuan Guo ◽  
Rong-Gen Cai ◽  
...  

AbstractExtending the electromagnetic and gravitational radiations from binary black holes with electric and magnetic charges in circular orbits in Liu et al. (Phys. Rev. D 102:103520, 2020), we calculate the total emission rates of energy and angular momentum due to gravitational and electromagnetic radiations from dyonic binary black holes in precessing elliptical orbits. It is shown that the emission rates of energy and angular momentum due to gravitational and electromagnetic radiations have the same dependence on the conic angle for different orbits. Moreover, we obtain the evolutions of orbits and find that a circular orbit remains circular while an elliptic orbit becomes quasi-circular due to electromagnetic and gravitational radiations. Using the evolution of orbits, we derive the waveform models for dyonic binary black hole inspirals and show the amplitudes of the gravitational waves for dyonic binary black hole inspirals differ from those for Schwarzschild binary black hole inspirals, which can be used to test electric and magnetic charges of black holes.


2021 ◽  
Vol 922 (2) ◽  
pp. 110
Author(s):  
Monica Gallegos-Garcia ◽  
Christopher P L Berry ◽  
Pablo Marchant ◽  
Vicky Kalogera

Abstract Rapid binary population synthesis codes are often used to investigate the evolution of compact-object binaries. They typically rely on analytical fits of single-star evolutionary tracks and parameterized models for interactive phases of evolution (e.g., mass transfer on a thermal timescale, determination of dynamical instability, and common envelope) that are crucial to predict the fate of binaries. These processes can be more carefully implemented in stellar structure and evolution codes such as MESA. To assess the impact of such improvements, we compare binary black hole mergers as predicted in models with the rapid binary population synthesis code COSMIC to models ran with MESA simulations through mass transfer and common-envelope treatment. We find that results significantly differ in terms of formation paths, the orbital periods and mass ratios of merging binary black holes, and consequently merger rates. While common-envelope evolution is the dominant formation channel in COSMIC, stable mass transfer dominates in our MESA models. Depending upon the black hole donor mass, and mass-transfer and common-envelope physics, at subsolar metallicity, COSMIC overproduces the number of binary black hole mergers by factors of 2–35 with a significant fraction of them having merger times orders of magnitude shorter than the binary black holes formed when using detailed MESA models. Therefore we find that some binary black hole merger rate predictions from rapid population syntheses of isolated binaries may be overestimated by factors of ∼ 5–500. We conclude that the interpretation of gravitational-wave observations requires the use of detailed treatment of these interactive binary phases.


2020 ◽  
Vol 501 (1) ◽  
pp. L49-L53 ◽  
Author(s):  
Tomoya Kinugawa ◽  
Takashi Nakamura ◽  
Hiroyuki Nakano

ABSTRACT In the case of zero-metal (Population III or Pop III) stars, we show that the total mass of binary black holes from binary Pop III star evolution can be ${\sim} 150 \, \mathrm{ M}_{\odot }$, which agrees with the mass of the binary black hole GW190521 recently discovered by LIGO/Virgo. The event rate of such binary black hole mergers is estimated as 0.13–0.66 (ρSFR/(6 × 105 M⊙ Mpc−3)) Errsys yr−1 Gpc−3, where ρSFR and Errsys are the cumulative comoving mass density of Pop III stars depending on star formation rate and the systematic errors depending on uncertainties in the Pop III binary parameters, respectively. The event rate in our fiducial model with ρSFR = 6 × 105 M⊙ Mpc−3 and Errsys = 1 is 0.13–0.66 yr−1 Gpc−3, which is consistent with the observed value of 0.02–0.43 yr−1 Gpc−3.


Sign in / Sign up

Export Citation Format

Share Document