scholarly journals Binary Black Hole Formation with Detailed Modeling: Stable Mass Transfer Leads to Lower Merger Rates

2021 ◽  
Vol 922 (2) ◽  
pp. 110
Author(s):  
Monica Gallegos-Garcia ◽  
Christopher P L Berry ◽  
Pablo Marchant ◽  
Vicky Kalogera

Abstract Rapid binary population synthesis codes are often used to investigate the evolution of compact-object binaries. They typically rely on analytical fits of single-star evolutionary tracks and parameterized models for interactive phases of evolution (e.g., mass transfer on a thermal timescale, determination of dynamical instability, and common envelope) that are crucial to predict the fate of binaries. These processes can be more carefully implemented in stellar structure and evolution codes such as MESA. To assess the impact of such improvements, we compare binary black hole mergers as predicted in models with the rapid binary population synthesis code COSMIC to models ran with MESA simulations through mass transfer and common-envelope treatment. We find that results significantly differ in terms of formation paths, the orbital periods and mass ratios of merging binary black holes, and consequently merger rates. While common-envelope evolution is the dominant formation channel in COSMIC, stable mass transfer dominates in our MESA models. Depending upon the black hole donor mass, and mass-transfer and common-envelope physics, at subsolar metallicity, COSMIC overproduces the number of binary black hole mergers by factors of 2–35 with a significant fraction of them having merger times orders of magnitude shorter than the binary black holes formed when using detailed MESA models. Therefore we find that some binary black hole merger rate predictions from rapid population syntheses of isolated binaries may be overestimated by factors of ∼ 5–500. We conclude that the interpretation of gravitational-wave observations requires the use of detailed treatment of these interactive binary phases.

2020 ◽  
Vol 635 ◽  
pp. A97 ◽  
Author(s):  
Simone S. Bavera ◽  
Tassos Fragos ◽  
Ying Qin ◽  
Emmanouil Zapartas ◽  
Coenraad J. Neijssel ◽  
...  

Context. After years of scientific progress, the origin of stellar binary black holes is still a great mystery. Several formation channels for merging black holes have been proposed in the literature. As more merger detections are expected with future gravitational-wave observations, population synthesis studies can help to distinguish between them. Aims. We study the formation of coalescing binary black holes via the evolution of isolated field binaries that go through the common envelope phase in order to obtain the combined distributions of observables such as black-hole spins, masses and cosmological redshifts of mergers. Methods. To achieve this aim, we used a hybrid technique that combines the parametric binary population synthesis code COMPAS with detailed binary evolution simulations performed with the MESA code. We then convolved our binary evolution calculations with the redshift- and metallicity-dependent star-formation rate and the selection effects of gravitational-wave detectors to obtain predictions of observable properties. Results. By assuming efficient angular momentum transport, we are able to present a model that is capable of simultaneously predicting the following three main gravitational-wave observables: the effective inspiral spin parameter χeff, the chirp mass Mchirp and the cosmological redshift of merger zmerger. We find an excellent agreement between our model and the ten events from the first two advanced detector observing runs. We make predictions for the third observing run O3 and for Advanced LIGO design sensitivity. We expect approximately 80% of events with χeff <  0.1, while the remaining 20% of events with χeff ≥ 0.1 are split into ∼10% with Mchirp <  15 M⊙ and ∼10% with Mchirp ≥ 15 M⊙. Moreover, we find that Mchirp and χeff distributions are very weakly dependent on the detector sensitivity. Conclusions. The favorable comparison of the existing LIGO/Virgo observations with our model predictions gives support to the idea that the majority, if not all of the observed mergers, originate from the evolution of isolated binaries. The first-born black hole has negligible spin because it lost its envelope after it expanded to become a giant star, while the spin of the second-born black hole is determined by the tidal spin up of its naked helium star progenitor by the first-born black hole companion after the binary finished the common-envelope phase.


2003 ◽  
Vol 212 ◽  
pp. 576-577
Author(s):  
Joris Van Bever ◽  
Dany Vanbeveren

We present the results of a study on the behaviour of the blue and red WR emission bumps (around 4650Å and 5808Å) and of the nebular contribution to He ii λ4686 in evolving young starburst regions (such as Wolf-Rayet galaxies), containing a non-negligible binary population. Calculations were made for solar metallicity and 1/20 solar. The population synthesis program uses an extended library of stellar evolutionary tracks of single stars and binaries, computed using the most recent stellar wind mass loss rates during RSG, LBV and WR stages. In the case of binaries, we account in detail for the effects of Roche lobe overflow, mass transfer and mass accretion, common envelope evolution, the spiral-in process, asymmetric kicks to neutron stars as a result of their supernova explosion, etc. This research is part of a more extensive project to explore every possible impact of massive binaries on stellar populations.


2020 ◽  
Vol 498 (3) ◽  
pp. 4287-4294
Author(s):  
Jongsuk Hong ◽  
Abbas Askar ◽  
Mirek Giersz ◽  
Arkadiusz Hypki ◽  
Suk-Jin Yoon

ABSTRACT The dynamical formation of black hole binaries in globular clusters that merge due to gravitational waves occurs more frequently in higher stellar density. Meanwhile, the probability to form intermediate mass black holes (IMBHs) also increases with the density. To explore the impact of the formation and growth of IMBHs on the population of stellar mass black hole binaries from globular clusters, we analyse the existing large survey of Monte Carlo globular cluster simulation data (mocca-survey Database I). We show that the number of binary black hole mergers agrees with the prediction based on clusters’ initial properties when the IMBH mass is not massive enough or the IMBH seed forms at a later time. However, binary black hole formation and subsequent merger events are significantly reduced compared to the prediction when the present-day IMBH mass is more massive than ${\sim}10^4\, \rm M_{\odot }$ or the present-day IMBH mass exceeds about 1 per cent of cluster’s initial total mass. By examining the maximum black hole mass in the system at the moment of black hole binary escaping, we find that ∼90 per cent of the merging binary black holes escape before the formation and growth of the IMBH. Furthermore, large fraction of stellar mass black holes are merged into the IMBH or escape as single black holes from globular clusters in cases of massive IMBHs, which can lead to the significant underpopulation of binary black holes merging with gravitational waves by a factor of 2 depending on the clusters’ initial distributions.


2019 ◽  
Vol 490 (4) ◽  
pp. 5210-5216 ◽  
Author(s):  
Isobel M Romero-Shaw ◽  
Paul D Lasky ◽  
Eric Thrane

ABSTRACT Binary black holes are thought to form primarily via two channels: isolated evolution and dynamical formation. The component masses, spins, and eccentricity of a binary black hole system provide clues to its formation history. We focus on eccentricity, which can be a signature of dynamical formation. Employing the spin-aligned eccentric waveform model seobnre, we perform Bayesian inference to measure the eccentricity of binary black hole merger events in the first gravitational-wave transient catalogue of LIGO and Virgo. We find that all of these events are consistent with zero eccentricity. We set upper limits on eccentricity ranging from 0.02 to 0.05 with 90  per cent confidence at a reference frequency of $10\, {\rm Hz}$. These upper limits do not significantly constrain the fraction of LIGO–Virgo events formed dynamically in globular clusters, because only $\sim 5{{\ \rm per\ cent}}$ are expected to merge with measurable eccentricity. However, with the gravitational-wave transient catalogue set to expand dramatically over the coming months, it may soon be possible to significantly constrain the fraction of mergers taking place in globular clusters using eccentricity measurements.


2019 ◽  
Vol 490 (3) ◽  
pp. 3740-3759 ◽  
Author(s):  
Coenraad J Neijssel ◽  
Alejandro Vigna-Gómez ◽  
Simon Stevenson ◽  
Jim W Barrett ◽  
Sebastian M Gaebel ◽  
...  

ABSTRACT We investigate the impact of uncertainty in the metallicity-specific star formation rate over cosmic time on predictions of the rates and masses of double compact object mergers observable through gravitational waves. We find that this uncertainty can change the predicted detectable merger rate by more than an order of magnitude, comparable to contributions from uncertain physical assumptions regarding binary evolution, such as mass transfer efficiency or supernova kicks. We statistically compare the results produced by the COMPAS population synthesis suite against a catalogue of gravitational-wave detections from the first two Advanced LIGO and Virgo observing runs. We find that the rate and chirp mass of observed binary black hole mergers can be well matched under our default evolutionary model with a star formation metallicity spread of 0.39 dex around a mean metallicity 〈Z〉 that scales with redshift z as 〈Z〉 = 0.035 × 10−0.23z, assuming a star formation rate of $0.01 \times (1+z)^{2.77} / (1+((1+z)/2.9)^{4.7}) \, \rm {M}_\odot$ Mpc−3 yr−1. Intriguingly, this default model predicts that 80 per cent of the approximately one binary black hole merger per day that will be detectable at design sensitivity will have formed through isolated binary evolution with only dynamically stable mass transfer, i.e. without experiencing a common-envelope event.


2020 ◽  
Vol 500 (1) ◽  
pp. 1380-1384
Author(s):  
Ilya Mandel ◽  
Bernhard Müller ◽  
Jeff Riley ◽  
Selma E de Mink ◽  
Alejandro Vigna-Gómez ◽  
...  

ABSTRACT We report on the impact of a probabilistic prescription for compact remnant masses and kicks on massive binary population synthesis. We find that this prescription populates the putative mass gap between neutron stars and black holes with low-mass black holes. However, evolutionary effects reduce the number of X-ray binary candidates with low-mass black holes, consistent with the dearth of such systems in the observed sample. We further find that this prescription is consistent with the formation of heavier binary neutron stars such as GW190425, but overpredicts the masses of Galactic double neutron stars. The revised natal kicks, particularly increased ultra-stripped supernova kicks, do not directly explain the observed Galactic double neutron star orbital period–eccentricity distribution. Finally, this prescription allows for the formation of systems similar to the recently discovered extreme mass ratio binary GW190814, but only if we allow for the survival of binaries in which the common envelope is initiated by a donor crossing the Hertzsprung gap, contrary to our standard model.


2014 ◽  
Vol 12 (2) ◽  
pp. 159-166
Author(s):  
Predrag Jovanovic ◽  
Luka Popovic

Here we discuss the possible observational effects in the X-ray emission from two relativistic accretion disks in a supermassive binary black hole system. For that purpose we developed a model and performed numerical simulations of the X-ray radiation from a relativistic accretion disk around a supermassive black hole, based on the ray-tracing method in the Kerr metric, and applied it to the case of the close binary supermassive black holes. Our results indicate that the broad Fe K? line is a powerful tool for detecting such systems and studying their properties. The most favorable candidates for observational studies are the supermassive binary black holes in the galactic mergers during the phase when the orbital velocities of their components are very large and exceed several thousand kms -1.


2019 ◽  
Vol 621 ◽  
pp. L1 ◽  
Author(s):  
Zacharias Roupas ◽  
Demosthenes Kazanas

We show that binaries of stellar-mass black holes formed inside a young protoglobular cluster, can grow rapidly inside the cluster’s core by accretion of the intracluster gas, before the gas may be depleted from the core. A black hole with mass of the order of eight solar masses can grow to values of the order of thirty five solar masses in accordance with recent gravitational waves signals observed by LIGO. Due to the black hole mass increase, a binary may also harden. The growth of binary black holes in a dense protoglobular cluster through mass accretion indicates a potentially important formation and hardening channel.


Sign in / Sign up

Export Citation Format

Share Document