scholarly journals The Bulk Flow Velocity and Acceleration of the Inner Jet in M87

2021 ◽  
Vol 918 (1) ◽  
pp. 4
Author(s):  
Brian Punsly
Keyword(s):  
2016 ◽  
Vol 65 (3) ◽  
pp. 601-613 ◽  
Author(s):  
Nataliya Strokina ◽  
Joni-Kristian Kamarainen ◽  
Jeffrey A. Tuhtan ◽  
Juan Francisco Fuentes-Perez ◽  
Maarja Kruusmaa

Author(s):  
Vera Hoferichter ◽  
Thomas Sattelmayer

Lean premixed combustion is prevailing in gas turbines to minimize nitrogen oxide emissions. However, this technology bears the risk of flame flashback and thermoacoustic instabilities. Thermoacoustic instabilities induce velocity oscillations at the burner exit which, in turn, can trigger flame flashback. This article presents an experimental study at ambient conditions on the effect of longitudinal acoustic excitation on flashback in the boundary layer of a channel burner. The acoustic excitation simulates the effect of thermoacoustic instabilities. Flashback limits are determined for different excitation frequencies characterizing intermediate frequency dynamics in typical gas turbine combustors (100–350 Hz). The excitation amplitude is varied from 0% to 36% of the burner bulk flow velocity. For increasing excitation amplitude, the risk of flame flashback increases. This effect is strongest at low frequencies. For increasing excitation frequency, the influence of the velocity oscillations decreases as the flame has less time to follow the changes in bulk flow velocity. Two different flashback regimes can be distinguished based on excitation amplitude. For low excitation amplitudes, flashback conditions are reached if the minimum flow velocity in the excitation cycle falls below the flashback limit of unexcited unconfined flames. For higher excitation amplitudes, where the flame starts to periodically enter the burner duct, flashback is initiated if the maximum flow velocity in the excitation cycle is lower than the flashback limit of confined flames. Consequently, flashback limits of confined flames should also be considered in the design of gas turbine burners as a worst case scenario.


2015 ◽  
Vol 77 (8) ◽  
Author(s):  
M. H. Padzillah ◽  
S. Rajoo ◽  
R. F. Martinez-Botas

The reciprocating nature of an Internal Combustion Engine (ICE) inevitably results in unsteady flow in the exhaust manifold. In a turbocharged engine, it means that the turbine is subjected to highly pulsating flows at its inlet. The finite time taken by the travelling pressure waves necessitates the need for phase-shifting method before any instantaneous parameter can be analyzed. In a turbocharger test-rig where the instantaneous isentropic power is evaluated upstream of the instantaneous actual power, one of the parameter has to be time-shifted in order to obtain meaningful instantaneous turbine efficiency. This research aims to compare two different methods of phase shifting which are by peak power matching and summation of sonic and bulk flow velocity. In achieving this aim, Computational Fluid Dynamics (CFD) models of full stage turbine operating at 20 Hz, 40 Hz, 60 Hz and 80 Hz have been developed and validated. Instantaneous efficiency was calculated at different locations and the order of calculated efficiency throughout the pulse is analyzed. Results have shown that phase shift using summation of sonic and bulk flow velocity indicated more reasonable efficiency values, thus the method could be used with high confidence for analysis involving unsteady turbine performance.


Author(s):  
Alp Albayrak ◽  
Thomas Steinbacher ◽  
Thomas Komarek ◽  
Wolfgang Polifke

For velocity sensitive premixed flames, intrinsic thermoacoustic (ITA) feedback results from flow-flame-acoustic interactions as follows: perturbations of velocity upstream of the flame result in modulations of the heat release rate, which in turn generate acoustic waves that travel in the downstream as well as the upstream direction. The latter perturb again the upstream velocity, and thus close the ITA feedback loop. This feedback mechanism exhibits resonance frequencies that are not related to acoustic eigenfrequencies of a combustor and generates — in additional to acoustic modes — so-called ITA modes. In this work spectral distributions of the sound pressure level (SPL) observed in a perfectly premixed, swirl stabilized combustion test rig are analyzed. Various burner configurations and operating points are investigated. Spectral peaks in the SPL data for stable as well as for unstable cases are interpreted with the help of a newly developed simple criterion for the prediction of burner intrinsic ITA modes. This criterion extends the known −π measure for the flame transfer function (FTF) by including the burner acoustic. This way, the peaks in the SPL spectra are identified to correspond to either ITA or acoustic modes. It is found that ITA modes are prevalent in this particular combustor. Their frequencies change significantly with the power rating (bulk flow velocity) and the axial position of the swirler, but are insensitive to changes in the length of the combustion chamber. It is argued that the resonance frequencies of the ITA feedback loop are governed by convective time scales. For that reason, they arise at rather low frequencies, which scale with the bulk flow velocity.


2008 ◽  
Vol 3 (1) ◽  
Author(s):  
Tantular Nurtono ◽  
Heru Setyawan ◽  
Ali Altway ◽  
Sugeng Winardi

Low frequency and large scale flow variations, often called macro-instability (MI) phenomena, were studied by means of a combination of large eddy simulations (LES) and sliding mesh (SM) models. Numerical predictions of MI characterictic in a six-bladed Rushton turbine stirred tank were performed by varying the off-bottom clearance at constant impeller rotational speed. The occurrence of MI in this study was identified by two methods: observing visually the flow velocity vector field and analyzing the time-series data of both velocity in the bulk flow and dynamic pressure on the vessel wall. The transient flow field visualization revealed the secondary circulation flow and the asymmetrical flow pattern beside of the mean flow pattern. The high variation intensity of flow pattern variation was clearly identified in the region with smaller space. The flow pattern variation was corroborated with the presence of high amplitude peaks in the low frequency part of the frequency spectrum of flow velocity. The distinct peak that was usually designated as the frequency of MI revealed the characteristic of MI. The physical meaning of the frequency of MI was the periodical appearance of the pronounced flow pattern. The numerical predictions of the frequency of MI in the region below and above impeller studied in this paper were confirmed well with the experimental results reported by Matsuda et al. (2004). The numerical prediction of the dynamic pressure monitored on the tank wall was also in agreement with the flow velocity monitored in the bulk flow for indicating the MI phenomena. This way of monitoring will be useful for the study of MI in multiphase agitated tank in the near future and in the practical application.


Author(s):  
Vera Hoferichter ◽  
Thomas Sattelmayer

Lean premixed combustion is prevailing in gas turbines to minimize nitrogen oxide emissions. However, this technology bears the risk of flame flashback and thermoacoustic instabilities. Thermoacoustic instabilities induce velocity oscillations at the burner exit which, in turn, can trigger flame flashback. This article presents an experimental study at ambient conditions on the effect of longitudinal acoustic excitation on flashback in the boundary layer of a channel burner. The acoustic excitation simulates the effect of thermoacoustic instabilities. Flashback limits are determined for different excitation frequencies characterizing intermediate frequency dynamics in typical gas turbine combustors (100–350 Hz). The excitation amplitude is varied from 0 to 36 % of the burner bulk flow velocity. For increasing excitation amplitude, the risk of flame flashback increases. This effect is strongest at low frequencies. For increasing excitation frequency the influence of the velocity oscillations decreases as the flame has less time to follow the changes in bulk flow velocity. Two different flashback regimes can be distinguished based on excitation amplitude. For low excitation amplitudes flashback conditions are reached if the minimum flow velocity in the excitation cycle falls below the flashback limit of unexcited unconfined flames. For higher excitation amplitudes, where the flame starts to periodically enter the burner duct, flashback is initiated if the maximum flow velocity in the excitation cycle is lower than the flashback limit of confined flames. Consequently, flashback limits of confined flames should also be considered in the design of gas turbine burners as a worst case scenario.


Sign in / Sign up

Export Citation Format

Share Document