scholarly journals Optical Spectroscopy of Dual Quasar Candidates from the Subaru HSC-SSP program

2021 ◽  
Vol 922 (1) ◽  
pp. 83
Author(s):  
Shenli Tang ◽  
John D. Silverman ◽  
Xuheng Ding ◽  
Junyao Li ◽  
Khee-Gan Lee ◽  
...  

Abstract We report on a spectroscopic program to search for dual quasars using Subaru Hyper Suprime-Cam (HSC) images of SDSS quasars, which represent an important stage during galaxy mergers. Using Subaru/FOCAS and Gemini-N/GMOS, we identify three new physically associated quasar pairs having projected separations less than 20 kpc, out of 26 observed candidates. These include the discovery of the highest-redshift (z = 3.1) quasar pair with a separation <10 kpc. Based on the sample acquired to date, the success rate of identifying physically associated dual quasars is 19% when excluding stars based on their HSC colors. Using the full sample of six spectroscopically confirmed dual quasars, including three previously published, we find that the black holes in these systems have black hole masses (M BH ∼ 108−9 M ⊙), bolometric luminosities (log L bol ∼ 44.5–47.5 erg s–1) and Eddington ratios (0.01–0.3) similar to single SDSS quasars. We measure the stellar mass of their host galaxies based on 2D image decomposition of the five-band (grizy) optical emission and assess the mass relation between supermassive black holes (SMBHs) and their hosts. Dual SMBHs appear to have elevated masses relative to their host galaxies. Thus, mergers may not necessarily align such systems onto the local mass relation, as suggested by the Horizon-AGN simulation. This study suggests that dual luminous quasars are triggered by mergers prior to the final coalescence of the two SMBHs, resulting in early mass growth of the black holes relative to their host galaxies.

2021 ◽  
Vol 503 (3) ◽  
pp. 3629-3642
Author(s):  
Colin DeGraf ◽  
Debora Sijacki ◽  
Tiziana Di Matteo ◽  
Kelly Holley-Bockelmann ◽  
Greg Snyder ◽  
...  

ABSTRACT With projects such as Laser Interferometer Space Antenna (LISA) and Pulsar Timing Arrays (PTAs) expected to detect gravitational waves from supermassive black hole mergers in the near future, it is key that we understand what we expect those detections to be, and maximize what we can learn from them. To address this, we study the mergers of supermassive black holes in the Illustris simulation, the overall rate of mergers, and the correlation between merging black holes and their host galaxies. We find these mergers occur in typical galaxies along the MBH−M* relation, and that between LISA and PTAs we expect to probe the full range of galaxy masses. As galaxy mergers can trigger star formation, we find that galaxies hosting low-mass black hole mergers tend to show a slight increase in star formation rates compared to a mass-matched sample. However, high-mass merger hosts have typical star formation rates, due to a combination of low gas fractions and powerful active galactic nucleus feedback. Although minor black hole mergers do not correlate with disturbed morphologies, major mergers (especially at high-masses) tend to show morphological evidence of recent galaxy mergers which survive for ∼500 Myr. This is on the same scale as the infall/hardening time of merging black holes, suggesting that electromagnetic follow-ups to gravitational wave signals may not be able to observe this correlation. We further find that incorporating a realistic time-scale delay for the black hole mergers could shift the merger distribution towards higher masses, decreasing the rate of LISA detections while increasing the rate of PTA detections.


2020 ◽  
Vol 499 (3) ◽  
pp. 3819-3836 ◽  
Author(s):  
Madeline A Marshall ◽  
Yueying Ni ◽  
Tiziana Di Matteo ◽  
J Stuart B Wyithe ◽  
Stephen Wilkins ◽  
...  

ABSTRACT We examine the properties of the host galaxies of $z=7$ quasars using the large volume, cosmological hydrodynamical simulation BlueTides. We find that the 10 most massive black holes and the 191 quasars in the simulation (with $M_{\textrm{UV,AGN}}\lt M_{\textrm{UV,host}}$) are hosted by massive galaxies with stellar masses $\log (M_\ast /\, {\rm M}_{\odot })=10.8\pm 0.2$, and $10.2\pm 0.4$, which have large star formation rates of $513_{-351}^{+1225}\, {\rm M}_{\odot }/\rm {yr}$ and $191_{-120}^{+288}\, {\rm M}_{\odot }/\rm {yr}$, respectively. The hosts of the most massive black holes and quasars in BlueTides are generally bulge-dominated, with bulge-to-total mass ratio $B/T\simeq 0.85\pm 0.1$; however, their morphologies are not biased relative to the overall $z=7$ galaxy sample. We find that the hosts of the most massive black holes and quasars are compact, with half-mass radii $R_{0.5}=0.41_{-0.14}^{+0.18}$ kpc and $0.40_{-0.09}^{+0.11}$ kpc, respectively; galaxies with similar masses and luminosities have a wider range of sizes with a larger median value, $R_{0.5}=0.71_{-0.25}^{+0.28}$ kpc. We make mock James Webb Space Telescope (JWST) images of these quasars and their host galaxies. We find that distinguishing the host from the quasar emission will be possible but still challenging with JWST, due to the small sizes of quasar hosts. We find that quasar samples are biased tracers of the intrinsic black hole–stellar mass relation, following a relation that is 0.2 dex higher than that of the full galaxy sample. Finally, we find that the most massive black holes and quasars are more likely to be found in denser environments than the typical $M_{\textrm{BH}}\gt 10^{6.5}\, {\rm M}_{\odot }$ black hole, indicating that minor mergers play at least some role in growing black holes in the early Universe.


2020 ◽  
Vol 494 (2) ◽  
pp. 2747-2759 ◽  
Author(s):  
Madeline A Marshall ◽  
Simon J Mutch ◽  
Yuxiang Qin ◽  
Gregory B Poole ◽  
J Stuart B Wyithe

ABSTRACT Correlations between black holes and their host galaxies provide insight into what drives black hole–host co-evolution. We use the Meraxes semi-analytic model to investigate the growth of black holes and their host galaxies from high redshift to the present day. Our modelling finds no significant evolution in the black hole–bulge and black hole–total stellar mass relations out to a redshift of 8. The black hole–total stellar mass relation has similar but slightly larger scatter than the black hole–bulge relation, with the scatter in both decreasing with increasing redshift. In our modelling, the growth of galaxies, bulges, and black holes are all tightly related, even at the highest redshifts. We find that black hole growth is dominated by instability-driven or secular quasar-mode growth and not by merger-driven growth at all redshifts. Our model also predicts that disc-dominated galaxies lie on the black hole–total stellar mass relation, but lie offset from the black hole–bulge mass relation, in agreement with recent observations and hydrodynamical simulations.


2019 ◽  
Vol 15 (S356) ◽  
pp. 143-143
Author(s):  
Jaya Maithil ◽  
Michael S. Brotherton ◽  
Bin Luo ◽  
Ohad Shemmer ◽  
Sarah C. Gallagher ◽  
...  

AbstractActive Galactic Nuclei (AGN) exhibit multi-wavelength properties that are representative of the underlying physical processes taking place in the vicinity of the accreting supermassive black hole. The black hole mass and the accretion rate are fundamental for understanding the growth of black holes, their evolution, and the impact on the host galaxies. Recent results on reverberation-mapped AGNs show that the highest accretion rate objects have systematic shorter time-lags. These super-Eddington accreting massive black holes (SEAMBHs) show BLR size 3-8 times smaller than predicted by the Radius-Luminosity (R-L) relationship. Hence, the single-epoch virial black hole mass estimates of highly accreting AGNs have an overestimation of a factor of 3-8 times. SEAMBHs likely have a slim accretion disk rather than a thin disk that is diagnostic in X-ray. I will present the extreme X-ray properties of a sample of dozen of SEAMBHs. They indeed have a steep hard X-ray photon index, Γ, and demonstrate a steeper power-law slope, ασx.


2019 ◽  
Vol 15 (S356) ◽  
pp. 376-376
Author(s):  
Ingyin Zaw

AbstractNuclear black holes in dwarf galaxies are important for understanding the low end of the supermassive black hole mass distribution and the black hole-host galaxy scaling relations. IC 750 is a rare system which hosts an AGN, found in ˜0.5% of dwarf galaxies, with circumnuclear 22 GHz water maser emission, found in ˜3–5% of Type 2 AGNs. Water masers, the only known tracer of warm, dense gas in the center parsec of AGNs resolvable in position and velocity, provide the most precise and accurate mass measurements of SMBHs outside the local group. We have mapped the maser emission in IC 750 and find that it traces a nearly edge-on warped disk, 0.2 pc in diameter. The central black hole has an upper limit mass of ˜1 × 105 M⊙ and a best fit mass of ˜8 × 104 M⊙, one to two orders of magnitude below what is expected from black hole-galaxy scaling relations. This has implications for models of black hole seed formation in the early universe, the growth of black holes, and their co-evolution with their host galaxies.


2009 ◽  
Vol 5 (S267) ◽  
pp. 151-160 ◽  
Author(s):  
Bradley M. Peterson

AbstractWe review briefly direct and indirect methods of measuring the masses of black holes in galactic nuclei, and then focus attention on supermassive black holes in active nuclei, with special attention to results from reverberation mapping and their limitations. We find that the intrinsic scatter in the relationship between the AGN luminosity and the broad-line region size is very small, ~0.11 dex, comparable to the uncertainties in the better reverberation measurements. We also find that the relationship between reverberation-based black hole masses and host-galaxy bulge luminosities also seems to have surprisingly little intrinsic scatter, ~0.17 dex. We note, however, that there are still potential systematics that could affect the overall mass calibration at the level of a factor of a few.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Gert Hütsi ◽  
Tomi Koivisto ◽  
Martti Raidal ◽  
Ville Vaskonen ◽  
Hardi Veermäe

AbstractWe show that the physical conditions which induce the Thakurta metric, recently studied by Bœhm et al. in the context of time-dependent black hole masses, correspond to a single accreting compact object in the entire Universe filled with isotropic non-interacting dust. In such a case, accretion physics is not local but tied to the properties of the whole Universe. We show that radiation, primordial black holes or particle dark matter cannot produce the specific energy flux required for supporting the mass growth of the compact objects described by the Thakurta metric. In particular, this solution does not apply to black hole binaries. We conclude that compact dark matter candidates and their mass growth cannot be described by the Thakurta metric, and thus existing constraints on the primordial black hole abundance from the LIGO-Virgo and the CMB measurements remain valid.


2019 ◽  
Vol 493 (1) ◽  
pp. 1500-1511 ◽  
Author(s):  
Francesco Shankar ◽  
David H Weinberg ◽  
Christopher Marsden ◽  
Philip J Grylls ◽  
Mariangela Bernardi ◽  
...  

ABSTRACT The masses of supermassive black holes at the centres of local galaxies appear to be tightly correlated with the mass and velocity dispersions of their galactic hosts. However, the local Mbh–Mstar relation inferred from dynamically measured inactive black holes is up to an order-of-magnitude higher than some estimates from active black holes, and recent work suggests that this discrepancy arises from selection bias on the sample of dynamical black hole mass measurements. In this work, we combine X-ray measurements of the mean black hole accretion luminosity as a function of stellar mass and redshift with empirical models of galaxy stellar mass growth, integrating over time to predict the evolving Mbh–Mstar relation. The implied relation is nearly independent of redshift, indicating that stellar and black hole masses grow, on average, at similar rates. Matching the de-biased local Mbh–Mstar relation requires a mean radiative efficiency ε ≳ 0.15, in line with theoretical expectations for accretion on to spinning black holes. However, matching the ‘raw’ observed relation for inactive black holes requires ε ∼ 0.02, far below theoretical expectations. This result provides independent evidence for selection bias in dynamically estimated black hole masses, a conclusion that is robust to uncertainties in bolometric corrections, obscured active black hole fractions, and kinetic accretion efficiency. For our fiducial assumptions, they favour moderate-to-rapid spins of typical supermassive black holes, to achieve ε ∼ 0.12–0.20. Our approach has similarities to the classic Soltan analysis, but by using galaxy-based data instead of integrated quantities we are able to focus on regimes where observational uncertainties are minimized.


2020 ◽  
Vol 634 ◽  
pp. A114 ◽  
Author(s):  
Turgay Caglar ◽  
Leonard Burtscher ◽  
Bernhard Brandl ◽  
Jarle Brinchmann ◽  
Richard I. Davies ◽  
...  

Context. The MBH–σ⋆ relation is considered a result of coevolution between the host galaxies and their supermassive black holes. For elliptical bulge hosting inactive galaxies, this relation is well established, but there is still discussion concerning whether active galaxies follow the same relation. Aims. In this paper, we estimate black hole masses for a sample of 19 local luminous active galactic nuclei (AGNs; LLAMA) to test their location on the MBH–σ⋆ relation. In addition, we test how robustly we can determine the stellar velocity dispersion in the presence of an AGN continuum and AGN emission lines, and as a function of signal-to-noise ratio. Methods. Supermassive black hole masses (MBH) were derived from the broad-line-based relations for Hα, Hβ, and Paβ emission line profiles for Type 1 AGNs. We compared the bulge stellar velocity dispersion (σ⋆) as determined from the Ca II triplet (CaT) with the dispersion measured from the near-infrared CO (2-0) absorption features for each AGN and find them to be consistent with each other. We applied an extinction correction to the observed broad-line fluxes and we corrected the stellar velocity dispersion by an average rotation contribution as determined from spatially resolved stellar kinematic maps. Results. The Hα-based black hole masses of our sample of AGNs were estimated in the range 6.34 ≤ log MBH ≤ 7.75 M⊙ and the σ⋆CaT estimates range between 73 ≤ σ⋆CaT ≤ 227 km s−1. From the so-constructed MBH − σ⋆ relation for our Type 1 AGNs, we estimate the black hole masses for the Type 2 AGNs and the inactive galaxies in our sample. Conclusions. We find that our sample of local luminous AGNs is consistent with the MBH–σ⋆ relation of lower luminosity AGNs and inactive galaxies, after correcting for dust extinction and the rotational contribution to the stellar velocity dispersion.


2009 ◽  
Vol 5 (S267) ◽  
pp. 239-247
Author(s):  
Marianne Vestergaard

AbstractI present mass functions of actively accreting black holes detected in different quasar surveys which in concert cover a wide range of cosmic history. I briefly address what we learn from these mass functions. I summarize the motivation for such a study and the methods by which we determine black hole masses.


Sign in / Sign up

Export Citation Format

Share Document