scholarly journals Near-infrared Supernova Ia Distances: Host Galaxy Extinction and Mass-step Corrections Revisited

2021 ◽  
Vol 923 (2) ◽  
pp. 237
Author(s):  
J. Johansson ◽  
S. B. Cenko ◽  
O. D. Fox ◽  
S. Dhawan ◽  
A. Goobar ◽  
...  

Abstract We present optical and near-infrared (NIR, Y-, J-, H-band) observations of 42 Type Ia supernovae (SNe Ia) discovered by the untargeted intermediate Palomar Transient Factory survey. This new data set covers a broad range of redshifts and host galaxy stellar masses, compared to previous SN Ia efforts in the NIR. We construct a sample, using also literature data at optical and NIR wavelengths, to examine claimed correlations between the host stellar masses and the Hubble diagram residuals. The SN magnitudes are corrected for host galaxy extinction using either a global total-to-selective extinction ratio, R V = 2.0, for all SNe, or a best-fit R V for each SN individually. Unlike previous studies that were based on a narrower range in host stellar mass, we do not find evidence for a “mass step,” between the color- and stretch-corrected peak J and H magnitudes for galaxies below and above log ( M * / M ⊙ ) = 10 . However, the mass step remains significant (3σ) at optical wavelengths (g, r, i) when using a global R V , but vanishes when each SN is corrected using their individual best-fit R V . Our study confirms the benefits of the NIR SN Ia distance estimates, as these are largely exempted from the empirical corrections dominating the systematic uncertainties in the optical.

2000 ◽  
Vol 539 (2) ◽  
pp. 658-674 ◽  
Author(s):  
Kevin Krisciunas ◽  
N. C. Hastings ◽  
Karen Loomis ◽  
Russet McMillan ◽  
Armin Rest ◽  
...  

2018 ◽  
Vol 609 ◽  
pp. A72 ◽  
Author(s):  
Suhail Dhawan ◽  
Saurabh W. Jha ◽  
Bruno Leibundgut

The most precise local measurements of H0 rely on observations of Type Ia supernovae (SNe Ia) coupled with Cepheid distances to SN Ia host galaxies. Recent results have shown tension comparing H0 to the value inferred from CMB observations assuming ΛCDM, making it important to check for potential systematic uncertainties in either approach. To date, precise local H0 measurements have used SN Ia distances based on optical photometry, with corrections for light curve shape and colour. Here, we analyse SNe Ia as standard candles in the near-infrared (NIR), where luminosity variations in the supernovae and extinction by dust are both reduced relative to the optical. From a combined fit to 9 nearby calibrator SNe with host Cepheid distances from Riess et al. (2016) and 27 SNe in the Hubble flow, we estimate the absolute peak J magnitude MJ = −18.524 ± 0.041 mag and H0 = 72.8 ± 1.6 (statistical) ±2.7 (systematic) km s-1 Mpc-1. The 2.2% statistical uncertainty demonstrates that the NIR provides a compelling avenue to measuring SN Ia distances, and for our sample the intrinsic (unmodeled) peak J magnitude scatter is just ~0.10 mag, even without light curve shape or colour corrections. Our results do not vary significantly with different sample selection criteria, though photometric calibration in the NIR may be a dominant systematic uncertainty. Our findings suggest that tension in the competing H0 distance ladders is likely not a result of supernova systematics that could be expected to vary between optical and NIR wavelengths, like dust extinction. We anticipate further improvements in H0 with a larger calibrator sample of SNe Ia with Cepheid distances, more Hubble flow SNe Ia with NIR light curves, and better use of the full NIR photometric data set beyond simply the peak J-band magnitude.


2014 ◽  
Vol 92 (12) ◽  
pp. 1667-1675 ◽  
Author(s):  
Chayan Ranjit ◽  
Prabir Rudra ◽  
Ujjal Debnath

We have assumed the Friedmann–Robertson–Walker model of the universe in Galileon gravity, which is filled with dark matter and modified Chaplygin gas (MCG) type dark energy. We present the Hubble parameter in terms of some unknown parameters and observational parameters with the redshift z. Some cosmological parameters are reconstructed and plots are generated to study the nature of the model and its viability. It is seen that the model is perfectly consistent with the present cosmic acceleration. From observed Hubble data (OHD) set or Stern data set of 12 points, we have obtained the bounds of the arbitrary parameters (A, B) and (A, C) by minimizing the χ2 test. Next because of joint analysis of OHD + baryonic acoustic oscillation (BAO) and OHD+BAO+CMB observations, we have also obtained the best fit values and the bounds of the parameters (A, B) and (A, C) by fixing some other parameters. The best-fit values and bounds of the parameters are obtained with 66%, 90%, and 99% confidence levels for OHD, OHD+BAO, and OHD+BAO+CMB joint analysis. Next we have also taken type Ia supernovae data set (union2 data set with 557 data points). The distance modulus μ(z) against redshift z for our theoretical MCG model in Galileon gravity have been tested for the best fit values of the parameters and the observed type Ia supernovae union2 data sample and from this, we have concluded that our model is in agreement with the union2 sample data.


2020 ◽  
Vol 644 ◽  
pp. A176
Author(s):  
M. Rigault ◽  
V. Brinnel ◽  
G. Aldering ◽  
P. Antilogus ◽  
C. Aragon ◽  
...  

As part of an on-going effort to identify, understand and correct for astrophysics biases in the standardization of Type Ia supernovae (SN Ia) for cosmology, we have statistically classified a large sample of nearby SNe Ia into those that are located in predominantly younger or older environments. This classification is based on the specific star formation rate measured within a projected distance of 1 kpc from each SN location (LsSFR). This is an important refinement compared to using the local star formation rate directly, as it provides a normalization for relative numbers of available SN progenitors and is more robust against extinction by dust. We find that the SNe Ia in predominantly younger environments are ΔY = 0.163 ± 0.029 mag (5.7σ) fainter than those in predominantly older environments after conventional light-curve standardization. This is the strongest standardized SN Ia brightness systematic connected to the host-galaxy environment measured to date. The well-established step in standardized brightnesses between SNe Ia in hosts with lower or higher total stellar masses is smaller, at ΔM = 0.119 ± 0.032 mag (4.5σ), for the same set of SNe Ia. When fit simultaneously, the environment-age offset remains very significant, with ΔY = 0.129 ± 0.032 mag (4.0σ), while the global stellar mass step is reduced to ΔM = 0.064  ±  0.029 mag (2.2σ). Thus, approximately 70% of the variance from the stellar mass step is due to an underlying dependence on environment-based progenitor age. Also, we verify that using the local star formation rate alone is not as powerful as LsSFR at sorting SNe Ia into brighter and fainter subsets. Standardization that only uses the SNe Ia in younger environments reduces the total dispersion from 0.142  ±  0.008 mag to 0.120  ±  0.010 mag. We show that as environment-ages evolve with redshift, a strong bias, especially on the measurement of the derivative of the dark energy equation of state, can develop. Fortunately, data that measure and correct for this effect using our local specific star formation rate indicator, are likely to be available for many next-generation SN Ia cosmology experiments.


2011 ◽  
Vol 7 (S281) ◽  
pp. 1-8
Author(s):  
Robert P. Kirshner

AbstractType Ia supernovae (SN Ia) are explosions of white dwarfs whose distances can be measured to a precision of ~5% using luminosity information that is encoded in the light curve shape. This property has been very successfully exploited to measure the history of cosmic expansion and to infer the presence of dark energy. But to learn the properties of dark energy and determine whether it is different from the cosmological constant demands higher precision and better accuracy than optical light curves alone can provide. The largest systematic uncertainties come from light curve fitters, photometric calibration errors, and from poor knowledge of the scattering properties of dust along the line of sight. Efforts to use SN Ia spectra as luminosity indicators have had some success, but have not produced a big step forward. Fortunately, observations of SN Ia in the near infrared (NIR), from 1 to 2 microns, offer a very promising path to better knowledge of the Hubble constant, improved constraints on dark energy, and, possibly, a route to discriminating the progenitor paths for SN Ia explosions.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ujjal Debnath

We have assumed FRW model of the universe in Einstein-Aether gravity filled with dark matter and modified Chaplygin gas (MCG) type dark energy. We present the Hubble parameter in terms of some unknown parameters and observational parameters with the redshiftz. From observed Hubble data (OHD) set (12 points), we have obtained the bounds of the arbitrary parameters(A,B)of MCG by minimizing theχ2test. Next due to joint analysis of BAO and CMB observations, we have also obtained the best fit values and the bounds of the parameters(A,B)by fixing some other parameters. We have also taken type Ia supernovae data set (union 2 data set with 557 data points). Next due to joint analysis with SNe, we have obtained the best fit values of parameters. The best fit values and bounds of the parameters are obtained by 66%, 90%, and 99% confidence levels for OHD, OHD + BAO, OHD + BAO + CMB, and OHD + BAO + CMB + SNe joint analysis. The distance modulusμzagainst redshiftzfor our theoretical MCG model in Einstein-Aether gravity has been tested for the best fit values of the parameters and the observed SNe Ia union2 data sample.


2015 ◽  
Vol 30 (40) ◽  
pp. 1530030 ◽  
Author(s):  
Christopher W. Stubbs ◽  
Yorke J. Brown

Measurements of the luminosity of Type Ia supernovae versus redshift provided the original evidence for the accelerating expansion of the Universe and the existence of dark energy. Despite substantial improvements in survey methodology, systematic uncertainty in flux calibration dominates the error budget for this technique, exceeding both statistics and other systematic uncertainties. Consequently, any further collection of Type Ia supernova data will fail to refine the constraints on the nature of dark energy unless we also improve the state of the art in astronomical flux calibration to the order of 1%. We describe how these systematic errors arise from calibration of instrumental sensitivity, atmospheric transmission and Galactic extinction, and discuss ongoing efforts to meet the 1% precision challenge using white dwarf stars as celestial standards, exquisitely calibrated detectors as fundamental metrologic standards, and real-time atmospheric monitoring.


Author(s):  
Naoki Yasuda ◽  
Masaomi Tanaka ◽  
Nozomu Tominaga ◽  
Ji-an Jiang ◽  
Takashi J Moriya ◽  
...  

Abstract We present an overview of a deep transient survey of the COSMOS field with the Subaru Hyper Suprime-Cam (HSC). The survey was performed for the 1.77 deg2 ultra-deep layer and 5.78 deg2 deep layer in the Subaru Strategic Program over six- and four-month periods from 2016 to 2017, respectively. The ultra-deep layer reaches a median depth per epoch of 26.4, 26.3, 26.0, 25.6, and 24.6 mag in g, r, i, z, and y bands, respectively; the deep layer is ∼0.6 mag shallower. In total, 1824 supernova candidates were identified. Based on light-curve fitting and derived light-curve shape parameter, we classified 433 objects as Type Ia supernovae (SNe); among these candidates, 129 objects have spectroscopic or COSMOS2015 photometric redshifts and 58 objects are located at z > 1. Our unique data set doubles the number of Type Ia SNe at z > 1 and enables various time-domain analyses of Type II SNe, high-redshift superluminous SNe, variable stars, and active galactic nuclei.


2019 ◽  
Vol 492 (2) ◽  
pp. 2029-2043 ◽  
Author(s):  
L J Shingles ◽  
S A Sim ◽  
M Kromer ◽  
K Maguire ◽  
M Bulla ◽  
...  

ABSTRACT We extend the range of validity of the artis 3D radiative transfer code up to hundreds of days after explosion, when Type Ia supernovae (SNe Ia) are in their nebular phase. To achieve this, we add a non-local thermodynamic equilibrium population and ionization solver, a new multifrequency radiation field model, and a new atomic data set with forbidden transitions. We treat collisions with non-thermal leptons resulting from nuclear decays to account for their contribution to excitation, ionization, and heating. We validate our method with a variety of tests including comparing our synthetic nebular spectra for the well-known one-dimensional W7 model with the results of other studies. As an illustrative application of the code, we present synthetic nebular spectra for the detonation of a sub-Chandrasekhar white dwarf (WD) in which the possible effects of gravitational settling of 22Ne prior to explosion have been explored. Specifically, we compare synthetic nebular spectra for a 1.06 M⊙ WD model obtained when 5.5 Gyr of very efficient settling is assumed to a similar model without settling. We find that this degree of 22Ne settling has only a modest effect on the resulting nebular spectra due to increased 58Ni abundance. Due to the high ionization in sub-Chandrasekhar models, the nebular [Ni ii] emission remains negligible, while the [Ni iii] line strengths are increased and the overall ionization balance is slightly lowered in the model with 22Ne settling. In common with previous studies of sub-Chandrasekhar models at nebular epochs, these models overproduce [Fe iii] emission relative to [Fe ii] in comparison to observations of normal SNe Ia.


2019 ◽  
Vol 486 (2) ◽  
pp. 2184-2196 ◽  
Author(s):  
E Macaulay ◽  
R C Nichol ◽  
D Bacon ◽  
D Brout ◽  
T M Davis ◽  
...  

ABSTRACT We present an improved measurement of the Hubble constant (H0) using the ‘inverse distance ladder’ method, which adds the information from 207 Type Ia supernovae (SNe Ia) from the Dark Energy Survey (DES) at redshift 0.018 < z < 0.85 to existing distance measurements of 122 low-redshift (z < 0.07) SNe Ia (Low-z) and measurements of Baryon Acoustic Oscillations (BAOs). Whereas traditional measurements of H0 with SNe Ia use a distance ladder of parallax and Cepheid variable stars, the inverse distance ladder relies on absolute distance measurements from the BAOs to calibrate the intrinsic magnitude of the SNe Ia. We find H0 = 67.8 ± 1.3 km s−1 Mpc−1 (statistical and systematic uncertainties, 68 per cent confidence). Our measurement makes minimal assumptions about the underlying cosmological model, and our analysis was blinded to reduce confirmation bias. We examine possible systematic uncertainties and all are below the statistical uncertainties. Our H0 value is consistent with estimates derived from the Cosmic Microwave Background assuming a ΛCDM universe.


Sign in / Sign up

Export Citation Format

Share Document