scholarly journals Precise astronomical flux calibration and its impact on studying the nature of the dark energy

2015 ◽  
Vol 30 (40) ◽  
pp. 1530030 ◽  
Author(s):  
Christopher W. Stubbs ◽  
Yorke J. Brown

Measurements of the luminosity of Type Ia supernovae versus redshift provided the original evidence for the accelerating expansion of the Universe and the existence of dark energy. Despite substantial improvements in survey methodology, systematic uncertainty in flux calibration dominates the error budget for this technique, exceeding both statistics and other systematic uncertainties. Consequently, any further collection of Type Ia supernova data will fail to refine the constraints on the nature of dark energy unless we also improve the state of the art in astronomical flux calibration to the order of 1%. We describe how these systematic errors arise from calibration of instrumental sensitivity, atmospheric transmission and Galactic extinction, and discuss ongoing efforts to meet the 1% precision challenge using white dwarf stars as celestial standards, exquisitely calibrated detectors as fundamental metrologic standards, and real-time atmospheric monitoring.

2019 ◽  
Vol 486 (2) ◽  
pp. 2184-2196 ◽  
Author(s):  
E Macaulay ◽  
R C Nichol ◽  
D Bacon ◽  
D Brout ◽  
T M Davis ◽  
...  

ABSTRACT We present an improved measurement of the Hubble constant (H0) using the ‘inverse distance ladder’ method, which adds the information from 207 Type Ia supernovae (SNe Ia) from the Dark Energy Survey (DES) at redshift 0.018 < z < 0.85 to existing distance measurements of 122 low-redshift (z < 0.07) SNe Ia (Low-z) and measurements of Baryon Acoustic Oscillations (BAOs). Whereas traditional measurements of H0 with SNe Ia use a distance ladder of parallax and Cepheid variable stars, the inverse distance ladder relies on absolute distance measurements from the BAOs to calibrate the intrinsic magnitude of the SNe Ia. We find H0 = 67.8 ± 1.3 km s−1 Mpc−1 (statistical and systematic uncertainties, 68 per cent confidence). Our measurement makes minimal assumptions about the underlying cosmological model, and our analysis was blinded to reduce confirmation bias. We examine possible systematic uncertainties and all are below the statistical uncertainties. Our H0 value is consistent with estimates derived from the Cosmic Microwave Background assuming a ΛCDM universe.


2011 ◽  
Vol 7 (S281) ◽  
pp. 1-8
Author(s):  
Robert P. Kirshner

AbstractType Ia supernovae (SN Ia) are explosions of white dwarfs whose distances can be measured to a precision of ~5% using luminosity information that is encoded in the light curve shape. This property has been very successfully exploited to measure the history of cosmic expansion and to infer the presence of dark energy. But to learn the properties of dark energy and determine whether it is different from the cosmological constant demands higher precision and better accuracy than optical light curves alone can provide. The largest systematic uncertainties come from light curve fitters, photometric calibration errors, and from poor knowledge of the scattering properties of dust along the line of sight. Efforts to use SN Ia spectra as luminosity indicators have had some success, but have not produced a big step forward. Fortunately, observations of SN Ia in the near infrared (NIR), from 1 to 2 microns, offer a very promising path to better knowledge of the Hubble constant, improved constraints on dark energy, and, possibly, a route to discriminating the progenitor paths for SN Ia explosions.


Symmetry ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 986 ◽  
Author(s):  
Matteo Martinelli ◽  
Isaac Tutusaus

With the recent increase in precision of our cosmological datasets, measurements of Λ CDM model parameter provided by high- and low-redshift observations started to be in tension, i.e., the obtained values of such parameters were shown to be significantly different in a statistical sense. In this work we tackle the tension on the value of the Hubble parameter, H 0 , and the weighted amplitude of matter fluctuations, S 8 , obtained from local or low-redshift measurements and from cosmic microwave background (CMB) observations. We combine the main approaches previously used in the literature by extending the cosmological model and accounting for extra systematic uncertainties. With such analysis we aim at exploring non standard cosmological models, implying deviation from a cosmological constant driven acceleration of the Universe expansion, in the presence of additional uncertainties in measurements. In more detail, we reconstruct the Dark Energy equation of state as a function of redshift, while we study the impact of type-Ia supernovae (SNIa) redshift-dependent astrophysical systematic effects on these tensions. We consider a SNIa intrinsic luminosity dependence on redshift due to the star formation rate in its environment, or the metallicity of the progenitor. We find that the H 0 and S 8 tensions can be significantly alleviated, or even removed, if we account for varying Dark Energy for SNIa and CMB data. However, the tensions remain when we add baryon acoustic oscillations (BAO) data into the analysis, even after the addition of extra SNIa systematic uncertainties. This points towards the need of either new physics beyond late-time Dark Energy, or other unaccounted systematic effects (particulary in BAO measurements), to fully solve the present tensions.


Science ◽  
2019 ◽  
Vol 366 (6465) ◽  
pp. eaau7365 ◽  
Author(s):  
Alexei Y. Poludnenko ◽  
Jessica Chambers ◽  
Kareem Ahmed ◽  
Vadim N. Gamezo ◽  
Brian D. Taylor

The nature of type Ia supernovae (SNIa)—thermonuclear explosions of white dwarf stars—is an open question in astrophysics. Virtually all existing theoretical models of normal, bright SNIa require the explosion to produce a detonation in order to consume all of stellar material, but the mechanism for the deflagration-to-detonation transition (DDT) remains unclear. We present a unified theory of turbulence-induced DDT that describes the mechanism and conditions for initiating detonation both in unconfined chemical and thermonuclear explosions. The model is validated by using experiments with chemical flames and numerical simulations of thermonuclear flames. We use the developed theory to determine criteria for detonation initiation in the single-degenerate Chandrasekhar-mass SNIa model and show that DDT is almost inevitable at densities of 107 to 108 grams per cubic centimeter.


2005 ◽  
Vol 192 ◽  
pp. 525-533
Author(s):  
Weidong Li ◽  
Alexei V. Filippenko

SummaryObservations of Type Ia supernovae (SNe Ia) reveal correlations between their luminosities and light-curve shapes, and between their spectral sequence and photometric sequence. Assuming SNe Ia do not evolve at different redshifts, the Hubble diagram of SNe Ia may indicate an accelerating Universe, the signature of a cosmological constant or other forms of dark energy. Several studies raise concerns about the evolution of SNe Ia (e.g., the peculiarity rate, the rise time, and the color of SNe Ia at different redshifts), but all these studies suffer from the difficulties of obtaining high-quality spectroscopy and photometry for SNe Ia at high redshifts. There are also some troubling cases of SNe Ia that provide counter examples to the observed correlations, suggesting that a secondary parameter is necessary to describe the whole SN Ia family. Understanding SNe Ia both observationally and theoretically will be the key to boosting confidence in the SN Ia cosmological results.


2007 ◽  
Vol 16 (10) ◽  
pp. 1573-1579
Author(s):  
CHENGWU ZHANG ◽  
LIXIN XU ◽  
YONGLI PING ◽  
HONGYA LIU

We use a parameterized equation of state (EOS) of dark energy to a 5D Ricci-flat cosmological solution and suppose the universe contains two major components: dark matter and dark energy. Using the recent observational datasets: the latest 182 type Ia Supernovae Gold data, the three-year WMAP CMB shift parameter and the SDSS baryon acoustic peak, we obtain the best fit values of the EOS and two major components' evolution. We find that the best fit EOS crosses -1 in the near past where z ≃ 0.07, the present best fit value of wx(0) < -1 and for this model, the universe experiences the acceleration at about z ≃ 0.5.


Sign in / Sign up

Export Citation Format

Share Document