scholarly journals NICER Study of Pulsed Thermal X-Rays from Calvera: A Neutron Star Born in the Galactic Halo?

2021 ◽  
Vol 922 (2) ◽  
pp. 253
Author(s):  
S. Mereghetti ◽  
M. Rigoselli ◽  
R. Taverna ◽  
L. Baldeschi ◽  
S. Crestan ◽  
...  

Abstract Calvera (1RXS J141256.0+792204) is an isolated neutron star detected only through its thermal X-ray emission. Its location at high Galactic latitude (b = +37°) is unusual if Calvera is a relatively young pulsar, as suggested by its spin period (59 ms) and period derivative (3.2 × 10−15 s s−1). Using the Neutron Star Interior Composition Explorer, we obtained a phase-connected timing solution spanning four years, which allowed us to measure the second derivative of the frequency ν ̈ = − 2.5 × 10 − 23 Hz s−2 and to reveal timing noise consistent with that of normal radio pulsars. A magnetized hydrogen atmosphere model, covering the entire star surface, provides a good description of the phase-resolved spectra and energy-dependent pulsed fraction. However, we found that a temperature map more anisotropic than that produced by a dipole field is required, with a hotter zone concentrated toward the poles. By adding two small polar caps, we found that the surface effective temperature and that of the caps are ∼0.1 and ∼0.36 keV, respectively. The inferred distance is ∼3.3 kpc. We confirmed the presence of an absorption line at 0.7 keV associated with the emission from the whole star surface, difficult to interpret as a cyclotron feature and more likely originating from atomic transitions. We searched for pulsed γ-ray emission by folding seven years of Fermi-LAT data using the X-ray ephemeris, but no evidence for pulsations was found. Our results favor the hypothesis that Calvera is a normal rotation-powered pulsar, with the only peculiarity of being born at a large height above the Galactic disk.

2020 ◽  
Author(s):  
Sergio Campana

Abstract The solid crust constituting the outer layers of a hot neutron star is wrapped by an mm-to-cm thin atmosphere. Even if the atmosphere is so thin, it substantially affects the blackbody spectrum emitted by the surface, resulting in an overall hardening of the emitted spectrum. The composition of the atmosphere has so far remained elusive. Several narrow absorption features have been detected and interpreted as arising from proton (or electron) resonant cyclotron absorption in the neutron star magnetic field. Apart from these, for a Hydrogen atmosphere no spectral features are expected, whereas when it is polluted with metals, absorption features start appearing in soft X-ray spectra. Absorption edges and features have been possibly observed during thermonuclear explosions onto the neutron star surface. Isolated neutron stars represent a breeding ground where to look for absorption features, thanks to their simple X-ray spectra. Here we report on the detection of redshifted Nitrogen and Oxygen absorption features from the closest and brightest isolated neutron star. The lines are ~50 eV wide and their intensity is incompatible from originating in the interstellar path to the neutron star. Lines are redshifted by a common gravitational redshift of z_g=0.216±0.004.


2018 ◽  
Vol 613 ◽  
pp. A52 ◽  
Author(s):  
P. Reig ◽  
A. Zezas

Context. IGR J06074+2205 is a poorly studied X-ray source with a Be star companion. It has been proposed to belong to the group of Be/X-ray binaries (BeXBs). In BeXBs, accretion onto the neutron star occurs via the transfer of material from the Be star’s circumstellar disk. Thus, in the absence of the disk, no X-ray should be detected. Aims. The main goal of this work is to study the quiescent X-ray emission of IGR J06074+2205 during a disk-loss episode. Methods. We obtained light curves at different energy bands and a spectrum covering the energy range 0.4–12 keV. We used Fourier analysis to study the aperiodic variability and epoch folding methods to study the periodic variability. Model fitting to the energy spectrum allowed us to identify the possible physical processes that generated the X-rays. Results. We show that at the time of the XMM-Newton observation, the decretion disk around the Be star had vanished. Still, accretion appears as the source of energy that powers the high-energy radiation in IGR J06074+2205. We report the discovery of X-ray pulsations with a pulse period of 373.2 s and a pulse fraction of ~50%. The 0.4–12 keV spectrum is well described by an absorbed power law and blackbody components with the best fitting parameters: NH = (6.2 ± 0.5) × 1021 cm−2, kTbb = 1.16 ± 0.03 keV, and Γ = 1.5 ± 0.1. The absorbed X-ray luminosity is LX = 1.4 × 1034 erg s−1 assuming a distance of 4.5 kpc. Conclusions. The detection of X-ray pulsations confirms the nature of IGR J06074+2205 as a BeXB. We discuss various scenarios to explain the quiescent X-ray emission of this pulsar. We rule out cooling of the neutron star surface and magnetospheric emission and conclude that accretion is the most likely scenario. The origin of the accreted material remains an open question.


2021 ◽  
Vol 502 (2) ◽  
pp. 2005-2022
Author(s):  
S Zharikov ◽  
D Zyuzin ◽  
Yu Shibanov ◽  
A Kirichenko ◽  
R E Mennickent ◽  
...  

ABSTRACT We report detection of PSR B0656+14 with the Gran Telescopio Canarias in narrow optical F657, F754, F802, and F902 and near-infrared JHKs bands. The pulsar detection in the Ks band extends its spectrum to 2.2 $\mu$m and confirms its flux increase towards the infrared. We also present a thorough analysis of the optical spectrum obtained by us with the VLT. For a consistency check, we revised the pulsar near-infrared and narrow-band photometry obtained with the HST. We find no narrow spectral lines in the optical spectrum. We compile available near-infrared-optical-UV and archival 0.3–20 keV X-ray data and perform a self-consistent analysis of the rotation phase-integrated spectrum of the pulsar using unified spectral models. The spectrum is best fitted by the four-component model including two blackbodies, describing the thermal emission from the neutron star surface and its hot polar cap, the broken power law, originating from the pulsar magnetosphere, and an absorption line near ∼0.5 keV detected previously. The fit provides better constraints on the model parameters than using only a single spectral domain. The derived surface temperature is $T_{NS}^{\infty } = 7.9(3)\times 10^5$ K. The intrinsic radius (7.8–9.9 km) of the emitting region is smaller than a typical neutron star radius (13 km) and suggests a non-uniform temperature distribution over the star surface. In contrast, the derived radius of the hot polar cap is about twice as large as the ‘canonical’ one. The spectrum of the non-thermal emission steepens from the optical to X-rays and has a break near 0.1 keV. The X-ray data suggest the presence of another absorption line near 0.3 keV.


2017 ◽  
Vol 13 (S337) ◽  
pp. 116-119
Author(s):  
Slavko Bogdanov

AbstractThe Galactic population of rotation-powered (aka radio) millisecond pulsars (MSPs) exhibits diverse X-ray properties. Energetic MSPs show pulsed non-thermal radiation from their magnetospheres. Eclipsing binary MSPs predominantly have X-ray emission from a pulsar wind driven intra-binary shock. Typical radio MSPs emit X-rays from their heated magnetic polar caps. These thermally emitting MSPs offer the opportunity to place interesting constraints on the long sought after dense matter equation of state, making them important targets of investigation of the recently deployed Neutron Star Interior Composition Explorer (NICER) X-ray mission.


2019 ◽  
Vol 490 (4) ◽  
pp. 5848-5859 ◽  
Author(s):  
Denis González-Caniulef ◽  
Sebastien Guillot ◽  
Andreas Reisenegger

ABSTRACT We analysed the thermal emission from the entire surface of the millisecond pulsar PSR J0437−4715 observed in the ultraviolet and soft X-ray bands. For this, we calculated non-magnetized, partially ionized atmosphere models of hydrogen, helium, and iron compositions and included plasma frequency effects that may affect the emergent spectrum. This is particularly true for the coldest atmospheres composed of iron (up to a few per cent changes in the soft X-ray flux). Employing a Markov chain Monte Carlo method, we found that the spectral fits favour a hydrogen atmosphere, disfavour a helium composition, and rule out iron atmosphere and blackbody models. By using a Gaussian prior on the dust extinction, based on the latest 3D map of Galactic dust, and accounting for the presence of hot polar caps found in the previous work, we found that the hydrogen atmosphere model results in a well-constrained neutron star radius ${R_{\rm NS}}= 13.6^{+0.9}_{-0.8}{\, {\rm km}}$ and bulk surface temperature ${T_{\rm eff}^{\infty }}=\left(2.3\pm 0.1\right){\times 10^{5}}{\, {\rm K}}$. This relatively large radius favours a stiff equation of state and disfavours a strange quark composition inside neutron stars.


2020 ◽  
Vol 493 (2) ◽  
pp. 1874-1887 ◽  
Author(s):  
A Danilenko ◽  
A Karpova ◽  
D Ofengeim ◽  
Yu Shibanov ◽  
D Zyuzin

ABSTRACT We report results of XMM–Newton observations of a γ-ray pulsar J0633+0632 and its wind nebula. We reveal, for the first time, pulsations of the pulsar X-ray emission with a single sinusoidal pulse profile and a pulsed fraction of 23 ± 6 per cent in the 0.3–2 keV band. We confirm previous Chandra findings that the pulsar X-ray spectrum consists of thermal and non-thermal components. However, we do not find the absorption feature that was previously detected at about 0.8 keV. Thanks to the greater sensitivity of XMM–Newton, we get stronger constraints on spectral model parameters compared to previous studies. The thermal component can be equally well described by either blackbody or neutron star atmosphere models, implying that this emission is coming from either hot pulsar polar caps with a temperature of about 120 eV or from the colder bulk of the neutron star surface with a temperature of about 50 eV. In the latter case, the pulsar appears to be one of the coolest among other neutron stars of similar ages with estimated surface temperatures. We discuss cooling scenarios relevant to this neutron star. Using an interstellar absorption–distance relation, we also constrain the distance to the pulsar to the range of 0.7–2 kpc. Besides the pulsar and its compact nebula, we detect regions of weak large-scale diffuse non-thermal emission in the pulsar field and discuss their possible nature.


2018 ◽  
Vol 620 ◽  
pp. L13 ◽  
Author(s):  
A. Rouco Escorial ◽  
J. van den Eijnden ◽  
R. Wijnands

We present our Swift monitoring campaign of the slowly rotating neutron star Be/X-ray transient GX 304–1 (spin period of ∼275 s) when the source was not in outburst. We found that between its type I outbursts, the source recurrently exhibits a slowly decaying low-luminosity state (with luminosities of 1034 − 35 erg s−1). This behaviour is very similar to what has been observed for another slowly rotating system, GRO J1008–57. For that source, this low-luminosity state has been explained in terms of accretion from a non-ionised (“cold”) accretion disc. Because of the many similarities between the two systems, we suggest that GX 304–1 enters a similar accretion regime between its outbursts. The outburst activity of GX 304–1 ceased in 2016. Our continued monitoring campaign shows that the source is in a quasi-stable low-luminosity state (with luminosities a few factors lower than previously seen) for at least one year now. Using our NuSTAR observation in this state, we found pulsations at the spin period, demonstrating that the X-ray emission is due to accretion of matter onto the neutron star surface. If the accretion geometry during this quasi-stable state is the same as during the cold-disc state, then matter indeed reaches the surface (as predicted) during this later state. We discuss our results in the context of the cold-disc accretion model.


2019 ◽  
Vol 628 ◽  
pp. A19 ◽  
Author(s):  
M. Quast ◽  
N. Langer ◽  
T. M. Tauris

Context. The origin and number of the Galactic supergiant X-ray binaries is currently not well understood. They consist of an evolved massive star and a neutron star or black-hole companion. X-rays are thought to be generated from the accretion of wind material donated by the supergiant, while mass transfer due to Roche-lobe overflow is mostly disregarded because the high mass ratios of these systems are thought to render this process unstable. Aims. We investigate how the proximity of supergiant donor stars to the Eddington limit, and their advanced evolutionary stage, may influence the evolution of massive and ultra-luminous X-ray binaries with supergiant donor stars (SGXBs and ULXs). Methods. We constructed models of massive stars with different internal hydrogen and helium gradients (H/He gradients) and different hydrogen-rich envelope masses, and exposed them to slow mass-loss to probe the response of the stellar radius. In addition, we computed the corresponding Roche-lobe overflow mass-transfer evolution with our detailed binary stellar evolution code, approximating the compact objects as point masses. Results. We find that a H/He gradient in the layers beneath the surface, as it is likely present in the well-studied donor stars of observed SGBXs, can enable mass transfer in SGXBs on a nuclear timescale with a black-hole or a neutron star accretor, even for mass ratios in excess of 20. In our binary evolution models, the donor stars rapidly decrease their thermal equilibrium radius and can therefore cope with the inevitably strong orbital contraction imposed by the high mass ratio. We find that the orbital period derivatives of our models agree well with empirical values. We argue that the SGXB phase may be preceded by a common-envelope evolution. The envelope inflation near the Eddington limit means that this mechanism more likely occurs at high metallicity. Conclusion. Our results open a new perspective for understanding that SGBXs are numerous in our Galaxy and are almost completely absent in the Small Magellanic Cloud. Our results may also offer a way to find more ULX systems, to detect mass transfer on nuclear timescales in ULX systems even with neutron star accretors, and shed new light on the origin of the strong B-field in these neutron stars.


1987 ◽  
Vol 92 ◽  
pp. 516-518
Author(s):  
Krishna M.V. Apparao ◽  
S.P. Tarafdar

Several Be stars are identified with bright X-ray sources. (Rappaport and Van den Heuvel, 1982). The bright X-ray emission and observed periodicities indicate the existence of compact objects (white dwarfs, neutron stars or black holes) near the Be stars. A prime example is the brightest X-ray source A0538-66 in LMC, which contains a neutron star with a rotation period of 59 ms. Apparao (1985) explained the X-ray emission, which occurs in periodic flares, by considering an inclined eccentric orbit for the neutron star around the assumed Be-star. The neutron star when it enters a gas ring (around the Be-star) accreting matter giving out X-rays.The X-ray emission from the compact objects, when the gas ring from the Be-star envelopes the objects, has interesting consequences. The X-ray emission produces an ionized region (compact object Stromgren sphere or COSS) in the gas surrounding the compact object (CO).


1970 ◽  
Vol 37 ◽  
pp. 406-407
Author(s):  
M. J. Rees

Below 1 keV, analyses of X-ray background data are complicated by galactic absorption effects, which cause the received intensity to vary with galactic latitude. Bowyer et al. (1968) observed that the diffuse background did not fall off as rapidly as was expected towards the galactic plane. One plausible interpretation of their data would be to suppose that a significant flux of soft X-rays emanates from the disc itself. I wish to discuss what could be inferred about the latter component from improved observations of its latitude-dependence, and by indirect methods.


Sign in / Sign up

Export Citation Format

Share Document