scholarly journals Photometric Dissection of Intracluster Light and Its Correlations with Host Cluster Properties

2021 ◽  
Vol 252 (2) ◽  
pp. 27
Author(s):  
M. Kluge ◽  
R. Bender ◽  
A. Riffeser ◽  
C. Goessl ◽  
U. Hopp ◽  
...  
Author(s):  
M. A. Listvan ◽  
R. P. Andres

Knowledge of the function and structure of small metal clusters is one goal of research in catalysis. One important experimental parameter is cluster size. Ideally, one would like to produce metal clusters of regulated size in order to characterize size-dependent cluster properties.A source has been developed which is capable of producing microscopic metal clusters of controllable size (in the range 5-500 atoms) This source, the Multiple Expansion Cluster Source, with a Free Jet Deceleration Filter (MECS/FJDF) operates as follows. The bulk metal is heated in an oven to give controlled concentrations of monomer and dimer which were expanded sonically. These metal species were quenched and condensed in He and filtered to produce areosol particles of a controlled size as verified by mass spectrometer measurements. The clusters were caught on pre-mounted, clean carbon films. The grids were then transferred in air for microscopic examination. MECS/FJDF was used to produce two different sizes of silver clusters for this study: nominally Ag6 and Ag50.


2016 ◽  
Vol 11 (S321) ◽  
pp. 336-338
Author(s):  
E. Pompei ◽  
C. Adami ◽  

AbstractIntracluster light is contributed by both stars and gas and it is an important tracer of the interaction history of galaxies within a cluster. We present here the results obtained from MUSE observations of an intermediate redshift (z~ 0.5) cluster taken from the XXL survey and we conclude that the most plausible process responsible for the observed amount of ICL is ram pressure stripping.


2021 ◽  
Vol 508 (1) ◽  
pp. 1280-1295
Author(s):  
Elizabeth J Gonzalez ◽  
Cinthia Ragone-Figueroa ◽  
Carlos J Donzelli ◽  
Martín Makler ◽  
Diego García Lambas ◽  
...  

ABSTRACT We present a detailed study of the shapes and alignments of different galaxy cluster components using hydrodynamical simulations. We compute shape parameters from the dark matter (DM) distribution, the galaxy members and the intracluster light (ICL). We assess how well the DM cluster shape can be constrained by means of the identified galaxy member positions and the ICL. Further, we address the dilution factor introduced when estimating the cluster elongation using weak-lensing stacking techniques, which arises due to the misalignment between the total surface mass distribution and the distribution of luminous tracers. The dilution is computed considering the alignment between the DM and the brightest cluster galaxy, the galaxy members and the ICL. Our study shows that distributions of galaxy members and ICL are less spherical than the DM component, although both are well aligned with the semimajor axis of the latter. We find that the distribution of galaxy members hosted in more concentrated subhaloes is more elongated than the distribution of the DM. Moreover, these galaxies are better aligned with the DM component compared to the distribution of galaxies hosted in less concentrated subhaloes. We conclude that the positions of galaxy members can be used as suitable tracers to estimate the cluster surface density orientation, even when a low number of members is considered. Our results provide useful information for interpreting the constraints on the shapes of galaxy clusters in observational studies.


2018 ◽  
Author(s):  
Bryan C. Souza ◽  
Vítor Lopes-dos-Santos ◽  
João Bacelo ◽  
Adriano B. L. Tort

AbstractThe shape of extracellularly recorded action potentials is a product of several variables, such as the biophysical and anatomical properties of the neuron and the relative position of the electrode. This allows for isolating spikes of different neurons recorded in the same channel into clusters based on waveform features. However, correctly classifying spike waveforms into their underlying neuronal sources remains a main challenge. This process, called spike sorting, typically consists of two steps: (1) extracting relevant waveform features (e.g., height, width), and (2) clustering them into non-overlapping groups believed to correspond to different neurons. In this study, we explored the performance of Gaussian mixture models (GMMs) in these two steps. We extracted relevant waveform features using a combination of common techniques (e.g., principal components and wavelets) and GMM fitting parameters (e.g., standard deviations and peak distances). Then, we developed an approach to perform unsupervised clustering using GMMs, which estimates cluster properties in a data-driven way. Our results show that the proposed GMM-based framework outperforms previously established methods when using realistic simulations of extracellular spikes and actual extracellular recordings to evaluate sorting performance. We also discuss potentially better techniques for feature extraction than the widely used principal components. Finally, we provide a friendly graphical user interface in MATLAB to run our algorithm, which allows for manual adjustment of the automatic results.


2015 ◽  
Vol 11 (S317) ◽  
pp. 69-76
Author(s):  
Magda Arnaboldi ◽  
Alessia Longobardi ◽  
Ortwin Gerhard

AbstractThe diffuse extended outer regions of galaxies are hard to study because they are faint, with typical surface brightness of 1% of the dark night sky. We can tackle this problem by using resolved star tracers which remain visible at large distances from the galaxy centers. This article describes the use of Planetary Nebulae as tracers and the calibration of their properties as indicators of the star formation history, mean age and metallicity of the parent stars in the Milky Way and Local Group galaxies. We then report on the results from a deep, extended, planetary nebulae survey in a 0.5 deg2region centered on the brightest cluster galaxy NGC 4486 (M87) in the Virgo cluster core, carried out with SuprimeCam@Subaru and FLAMES-GIRAFFE@VLT. Two planetary nebulae populations are identified out to 150 kpc distance from the center of M87. One population is associated with the M87 halo and the second one with the intracluster light in the Virgo cluster core. They have different line-of-sight velocity and spatial distributions, as well as different planetary nebulae specific frequencies and luminosity functions. The intracluster planetary nebulae in the surveyed region correspond to a luminosity of four times the luminosity of the Large Magellanic Cloud. The M87 halo planetary nebulae trace an older, more metal-rich, parent stellar population. A substructure detected in the projected phase-space of the line-of-sight velocity vs. major axis distance for the M87 halo planetary nebulae provides evidence for the recent accretion event of a satellite galaxy with luminosity twice that of M33. The satellite stars were tidally stripped about 1 Gyr ago, and reached apocenter at a major axis distance of 60–90 kpc from the center of M87. The M87 halo is still growing significantly at the distances where the substructure is detected.


2020 ◽  
Vol 494 (2) ◽  
pp. 1859-1864 ◽  
Author(s):  
Isaac Alonso Asensio ◽  
Claudio Dalla Vecchia ◽  
Yannick M Bahé ◽  
David J Barnes ◽  
Scott T Kay

ABSTRACT By using deep observations of clusters of galaxies, it has been recently found that the projected stellar mass density closely follows the projected total (dark and baryonic) mass density within the innermost ∼140 kpc. In this work, we aim to test these observations using the Cluster-EAGLE simulations, comparing the projected densities inferred directly from the simulations. We compare the iso-density contours using the procedure of Montes & Trujillo, and find that the shape of the stellar mass distribution follows that of the total matter even more closely than observed, although their radial profiles differ substantially. The ratio between stellar and total matter density profiles in circular apertures shows a slope close to −1, with a small dependence on the cluster’s total mass. We propose an indirect method to calculate the halo mass and mass density profile from the radial profile of the intracluster stellar mass density.


2009 ◽  
Vol 699 (2) ◽  
pp. 1518-1529 ◽  
Author(s):  
Craig S. Rudick ◽  
J. Christopher Mihos ◽  
Lucille H. Frey ◽  
Cameron K. McBride

2003 ◽  
Vol 209 ◽  
pp. 597-604 ◽  
Author(s):  
John J. Feldmeier

We review the progress of research on intracluster planetary nebulae (IPN). In the past five years, hundreds of IPN candidates have been detected in the Virgo and Fornax galaxy clusters and searches are also underway in poorer galaxy groups. From the observations to date, and applying the known properties of extragalactic planetary nebulae, the intracluster light in Virgo and Fornax: 1) is significant, at least 20% of the total cluster stellar luminosity, 2) is elongated in Virgo along our line of sight, and 3) may derive from lower-luminosity galaxies, consistent with some models of intracluster star production. A fraction of IPN candidates are not true IPN, but emission-line sources of very large observed equivalent width (≥ 200 Å). The most likely source for these contaminating objects are Lyman-α galaxies at z ≈ 3.1. Follow-up spectroscopy of the IPN candidates will be crucial to discriminate against high red-shift galaxies and to derive the velocity field of the intracluster stellar population.


2014 ◽  
Vol 565 ◽  
pp. A126 ◽  
Author(s):  
V. Presotto ◽  
M. Girardi ◽  
M. Nonino ◽  
A. Mercurio ◽  
C. Grillo ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document