Similarities between the X-Ray Light Curves of the 2016 and 2020 Eruptions of the Recurrent Nova LMC 1968

2020 ◽  
Vol 4 (8) ◽  
pp. 142
Author(s):  
Greg J. Schwarz ◽  
Kim L. Page ◽  
Paul M. Kuin ◽  
Matthew J. Darnley
Keyword(s):  
X Ray ◽  
2020 ◽  
Vol 72 (5) ◽  
Author(s):  
Mariko Kato ◽  
Izumi Hachisu

Abstract We have examined the optical/X-ray light curves of seven well-observed recurrent novae, V745 Sco, M31N 2008-12a, LMC N 1968, U Sco, RS Oph, LMC N 2009a, T Pyx, and one recurrent nova candidate LMC N 2012a. Six novae out of the eight show a simple relation that the duration of supersoft X-ray source (SSS) phase is 0.70 times the total duration of the outburst (= X-ray turnoff time), i.e., tSSS = 0.70 toff, the total duration of which ranges from 10 to 260 d. These six recurrent novae show a broad rectangular X-ray light curve shape, the first half-period of which is highly variable in the X-ray count rate. The SSS phase also corresponds to an optical plateau phase that indicates a large accretion disk irradiated by a hydrogen-burning white dwarf (WD). The two other recurrent novae, T Pyx and V745 Sco, show a narrow triangular-shaped X-ray light curve without an optical plateau phase. Their relations between tSSS and toff are rather different from the above six recurrent novae. We also present theoretical SSS durations for recurrent novae with various WD masses and stellar metallicities (Z = 0.004, 0.01, 0.02, and 0.05) and compare them with the observed durations of these recurrent novae. We show that SSS duration is a good indicator of WD mass in recurrent novae with a broad rectangular X-ray light curve shape.


1987 ◽  
Vol 93 ◽  
pp. 207-223
Author(s):  
J.P. Osborne

AbstractThe X-ray observatory EXOSAT spent over 1000 hours observing cataclysmic variables. Some of the major results reviewed here are: soft X-ray light curve changes in AM Her objects, orbital effects in the X-ray light curves of intermediate polars and U Gem, regular behaviour in the inter-outburst X-ray flux of VW Hyi, and X-ray emission from the tenuous remnant of the recent recurrent nova RS Oph. The ability of EXOSAT to make long uninterupted observations at high sensitivity over a broad spectral range and to react quickly to cosmic events has yielded a dataset of a quality that will not be surpassed for many years.


2021 ◽  
Vol 502 (1) ◽  
pp. L72-L78
Author(s):  
K Mohamed ◽  
E Sonbas ◽  
K S Dhuga ◽  
E Göğüş ◽  
A Tuncer ◽  
...  

ABSTRACT Similar to black hole X-ray binary transients, hysteresis-like state transitions are also seen in some neutron-star X-ray binaries. Using a method based on wavelets and light curves constructed from archival Rossi X-ray Timing Explorer observations, we extract a minimal timescale over the complete range of transitions for 4U 1608-52 during the 2002 and 2007 outbursts and the 1999 and 2000 outbursts for Aql X-1. We present evidence for a strong positive correlation between this minimal timescale and a similar timescale extracted from the corresponding power spectra of these sources.


2020 ◽  
Vol 501 (1) ◽  
pp. 168-178
Author(s):  
Chen Li ◽  
Guobao Zhang ◽  
Mariano Méndez ◽  
Jiancheng Wang ◽  
Ming Lyu

ABSTRACT We have found and analysed 16 multipeaked type-I bursts from the neutron-star low-mass X-ray binary 4U 1636 − 53 with the Rossi X-ray Timing Explorer (RXTE). One of the bursts is a rare quadruple-peaked burst that was not previously reported. All 16 bursts show a multipeaked structure not only in the X-ray light curves but also in the bolometric light curves. Most of the multipeaked bursts appear in observations during the transition from the hard to the soft state in the colour–colour diagram. We find an anticorrelation between the second peak flux and the separation time between two peaks. We also find that in the double-peaked bursts the peak-flux ratio and the temperature of the thermal component in the pre-burst spectra are correlated. This indicates that the double-peaked structure in the light curve of the bursts may be affected by enhanced accretion rate in the disc, or increased temperature of the neutron star.


2021 ◽  
Vol 256 (2) ◽  
pp. 45
Author(s):  
Diogo Belloni ◽  
Claudia V. Rodrigues ◽  
Matthias R. Schreiber ◽  
Manuel Castro ◽  
Joaquim E. R. Costa ◽  
...  

1989 ◽  
Vol 104 (1) ◽  
pp. 289-298
Author(s):  
Giovanni Peres

AbstractThis paper discusses the hydrodynamic modeling of flaring plasma confined in magnetic loops and its objectives within the broader scope of flare physics. In particular, the Palermo-Harvard model is discussed along with its applications to the detailed fitting of X-ray light curves of solar flares and to the simulation of high-resolution Caxix spectra in the impulsive phase. These two approaches provide complementary constraints on the relevant features of solar flares. The extension to the stellar case, with the fitting of the light curve of an X-ray flare which occurred on Proxima Centauri, demonstrates the feasibility of using this kind of model for stars too. Although the stellar observations do not provide the wealth of details available for the Sun, and, therefore, constrain the model more loosely, there are strong motivations to pursue this line of research: the wider range of physical parameters in stellar flares and the possibility of studying further the solar-stellar connection.


2011 ◽  
Vol 196 (1) ◽  
pp. 6 ◽  
Author(s):  
Alan M. Levine ◽  
Hale V. Bradt ◽  
Deepto Chakrabarty ◽  
Robin H. D. Corbet ◽  
Robert J. Harris
Keyword(s):  
X Ray ◽  

2008 ◽  
Vol 386 (2) ◽  
pp. 859-863 ◽  
Author(s):  
P. A. Curran ◽  
A. J. van der Horst ◽  
R. A. M. J. Wijers
Keyword(s):  

Author(s):  
I. I. Antokhin ◽  
A. M. Cherepashchuk ◽  
E. A. Antokhina ◽  
A. M. Tatarnikov
Keyword(s):  

2020 ◽  
Vol 638 ◽  
pp. A13 ◽  
Author(s):  
D. Ilić ◽  
V. Oknyansky ◽  
L. Č. Popović ◽  
S. S. Tsygankov ◽  
A. A. Belinski ◽  
...  

Context. We present observations from the short-term intensive optical campaign (from September 2019 to January 2020) of the changing-look Seyfert NGC 3516. This active galactic nucleus is known to have strong optical variability and has changed its type in the past. It has been in the low-activity state in the optical since 2013, with some rebrightening from the end of 2015 to the beginning of 2016, after which it remained dormant. Aims. We aim to study the photometric and spectral variability of NGC 3516 from the new observations in U- and B-bands and examine the profiles of the optical broad emission lines in order to demonstrate that this object may be entering a new state of activity. Methods. NGC 3516 has been monitored intensively for the past 4 months with an automated telescope in U and B filters, enabling accurate photometry of 0.01 precision. Spectral observations were triggered when an increase in brightness was spotted. We support our analysis of past-episodes of violent variability with the UV and X-ray long-term light curves constructed from the archival Swift/UVOT and Swift/XRT data. Results. An increase of the photometric magnitude is seen in both U and B filters to a maximum amplitude of 0.25 mag and 0.11 mag, respectively. During the flare, we observe stronger forbidden high-ionization iron lines ([Fe VII] and [Fe X]) than reported before, as well as the complex broad Hα and Hβ lines. This is especially seen in Hα, which appears to be double-peaked. It seems that a very broad component of ∼10 000 km s−1 in width in the Balmer lines is appearing. The trends in the optical, UV, and X-ray light curves are similar, with the amplitudes of variability being significantly larger in the case of UV and X-ray bands. Conclusions. The increase of the continuum emission, the variability of the coronal lines, and the very broad component in the Balmer lines may indicate that the AGN of NGC 3516 is finally leaving the low-activity state in which it has been for the last ∼3 years.


Sign in / Sign up

Export Citation Format

Share Document