scholarly journals End-member volcanism in the absence of plate tectonics: Silicic volcanism on the Moon

2021 ◽  
Vol 53 (4) ◽  
Author(s):  
Sarah Valencia ◽  
Ryan N. Watkins ◽  
Jacob A. Richardson ◽  
Timothy Glotch ◽  
Erica Jawin ◽  
...  
Author(s):  
Xiaojia Zeng ◽  
Xiongyao Li ◽  
Xiaoping Xia ◽  
Jianzhong Liu ◽  
Zexian Cui ◽  
...  

2021 ◽  
pp. 163-180
Author(s):  
Elisabeth Ervin-Blankenheim

The way the planet has changed through geologic time, and life on it, the account of the Earth, is the topic of this and the next three chapters, starting in this chapter with the Precambrian Supereon. The overarching principles of geologic time, plate tectonics, and evolution worked dynamically to create the biography of the planet. This chapter traces back to the recesses of the geologic record and early Earth, from its birth and the formation of the Moon through seven-eighths of its existence, a huge span of time. Early life forms emerged during this supereon in the Archean Eon and had a profound influence on other Earth systems. Life interacted and changed the chemistry of the atmosphere through photosynthesis, so much so that the changes are thought to have sent planetary systems over an edge into multiple “Snowball Earth” episodes when most of the planet froze over. In addition to the beginning of organic life and climate, the emergence and configuration of the continents during the Precambrian are covered. Events of this supereon set the stage for the burgeoning of life forms in the next eon, the Phanerozoic.


Author(s):  
Michael J. Branney ◽  
Jan Zalasiewicz

‘Volcanoes beyond Earth’ highlights volcanoes on other planets. There are many more volcanoes on Venus than there are on Earth, and many remain active. In the absence of plate tectonics and the kind of tectonic forces that raise Earth-style mountain belts, and of streams, rivers, and shorelines, it is volcanism and volcanic products that dominate the surface of this planet. Fossil volcanism occurs in the Moon, Mercury, and Mars; Io, the hypervolcanic moon of Jupiter; and the ice volcanoes of the Solar System. There is potential for volcanism on exoplanets within distant planetary systems.


Author(s):  
Paul K. Byrne

Mercury, like its inner Solar System planetary neighbors Venus, Mars, and the Moon, shows no evidence of having ever undergone plate tectonics. Nonetheless, the innermost planet boasts a long record of tectonic deformation. The most prominent manifestation of this history is a population of large scarps that occurs throughout the planet’s cratered terrains; some of these scarps rise kilometers above the surrounding landscape. Mercury’s smooth plains, the majority of which are volcanic and occupy over a quarter of the planet, abound with low-relief ridges. The scarps and ridges are underlain by thrust faults and point to a tectonic history dominated by crustal shortening. At least some of the shortening strain recorded by the ridges may reflect subsidence of the lavas in which they formed, but the widespread distribution of scarps attests to a planetwide process of global contraction, wherein Mercury experienced a reduction in volume as its interior cooled through time. The onset of this phenomenon placed the lithosphere into a net state of horizontal compression, and accounts for why Mercury hosts only a few instances of extensional structures. These landforms, shallow troughs that form complex networks, occur almost wholly in volcanically flooded impact craters and basins and developed as those lavas cooled and thermally contracted. Tellingly, widespread volcanism on Mercury ended at around the same time the population of scarps began to form. Explosive volcanism endured beyond this point, but almost exclusively at sites of lithospheric weakness, where large faults penetrate deep into the interior. These observations are consistent with decades-old predictions that global contraction would shut off major volcanic activity, and illustrate how closely Mercury’s tectonic and volcanic histories are intertwined. The tectonic character of Mercury is thus one of sustained crustal shortening with only localized extension, which started almost four billion years ago and extends into the geologically recent past. This character somewhat resembles that of the Moon, but differs substantially from those of Earth, Venus, or Mars. Mercury may represent how small rocky planets tectonically evolve and could provide a basis for understanding the geological properties of similarly small worlds in orbit around other stars.


2017 ◽  
Vol 17 (1) ◽  
pp. 96-100 ◽  
Author(s):  
Jason T. Wright

AbstractOne of the primary open questions of astrobiology is whether there is extant or extinct life elsewhere the solar system. Implicit in much of this work is that we are looking for microbial or, at best, unintelligent life, even though technological artefacts might be much easier to find. Search for Extraterrestrial Intelligence (SETI) work on searches for alien artefacts in the solar system typically presumes that such artefacts would be of extrasolar origin, even though life is known to have existed in the solar system, on Earth, for eons. But if a prior technological, perhaps spacefaring, species ever arose in the solar system, it might have produced artefacts or other technosignatures that have survived to present day, meaning solar system artefact SETI provides a potential path to resolving astrobiology's question. Here, I discuss the origins and possible locations for technosignatures of such a prior indigenous technological species, which might have arisen on ancient Earth or another body, such as a pre-greenhouse Venus or a wet Mars. In the case of Venus, the arrival of its global greenhouse and potential resurfacing might have erased all evidence of its existence on the Venusian surface. In the case of Earth, erosion and, ultimately, plate tectonics may have erased most such evidence if the species lived Gyr ago. Remaining indigenous technosignatures might be expected to be extremely old, limiting the places they might still be found to beneath the surfaces of Mars and the Moon, or in the outer solar system.


Both the concepts of plate tectonics and continental drift conceive that the planet earth’s dimension, associated with its oceans, has remained unchanged throughout the past geological periods. In contrast, Hilgenberg’s model of earth expansion endorses that initially the planet was considerably small and devoid of oceans [1]. Based on earth expansion theory the author has pointed out that since the primordial condensed or small earth was devoid of oceans, initially the ocean-forming water must have been associated with the mantle, thereby turning that geosphere considerably fluid and pre-eminently suitable for planetary expansion. Expansion of the planet appears to have been caused owing to swelling up of the semi-fluid mantle in response to an external gravitational pull caused by an extra-terrestrial planetary body, probably the Moon. The primordial earth was completely covered with a relatively thin granitic crust, which, due to swelling up of the mantle developed a number of long and sinuous expansion cracks. Through these expansion cracks widespread eruption of molten magma took place spreading on both sides of the cracks to form rudimentary oceans basins. With continued expansion, the dimension of the oceans was broadened while the expansion cracks turned in to mid-oceanic ridges. Associated with expulsion of molten lava, large quantum of volatiles, chiefly constituted of water was released from the mantle that formed the ocean water while due to desiccation of the mantle, the process of expansion was eventually stopped.


2021 ◽  
Author(s):  
Homayoon Mohammadiha

It seems anorthosites are by far interested by geologists because they give us great information about Earth history and how it was evolved in planetary geology. Planetary geology is subject the geology of the celestial bodies such as the planets and their moons, asteroids, comets, and meteorites. It is nearly abundant in the moon. So, it seems studying of these rocks give us good information about planetary evolution and the own early time conditions. Anorthosites can be divided into few types on earth such as: Archean-age (between 4,000 to 2,500 million years ago) anorthosites, Proterozoic (2.5 billion years ago) anorthosite (also known as massif or massif-type anorthosite) – the most abundant type of anorthosite on Earth, Anorthosite xenoliths in other rocks (often granites, kimberlites, or basalts). Furthermore, Lunar anorthosites constitute the light-colored areas of the Moon’s surface and have been the subject of much research. According to the Giant-impact hypothesis the moon and earth were both originated from ejecta of a collision between the proto-Earth and a Mars-sized planetesimal, approximately 4.5 billion years ago. The geology of the Moon (lunar science) is different from Earth. The Moon has a lower gravity and it got cooled faster due to its small size. Also, it has no plate tectonics and due to lack of a true atmosphere it has no erosion and weathering alike the earth. However, Eric A.K. Middlemost believed the astrogeology will help petrologist to make better petrogenic models to understand the magma changing process despite some terms geological differences among the Earth and other extraterrestrial bodies like the Moon. So, it seems that these future studies will clarify new facts about planet formation in planetary and earth, too.


2018 ◽  
Vol 162 ◽  
pp. 62-72 ◽  
Author(s):  
Joseph M. Boyce ◽  
Thomas Giguere ◽  
Peter Mouginis-Mark ◽  
Timothy Glotch ◽  
G. Jeffrey Taylor
Keyword(s):  
The Moon ◽  

Author(s):  
Doris Breuer ◽  
Tilman Spohn ◽  
Tim Van Hoolst ◽  
Wim van Westrenen ◽  
Sabine Stanley ◽  
...  

AbstractThe Earth-like planets and moons in our solar system have iron-rich cores, silicate mantles, and a basaltic crust. Differentiated icy moons can have a core and a mantle and an outer water–ice layer. Indirect evidence for several icy moons suggests that this ice is underlain by or includes a water-rich ocean. Similar processes are at work in the interiors of these planets and moons, including heat transport by conduction and convection, melting and volcanism, and magnetic field generation. There are significant differences in detail, though, in both bulk chemical compositions and relative volume of metal, rock and ice reservoirs. For example, the Moon has a small core [~ 0.2 planetary radii (RP)], whereas Mercury’s is large (~ 0.8 RP). Planetary heat engines can operate in somewhat different ways affecting the evolution of the planetary bodies. Mercury and Ganymede have a present-day magnetic field while the core dynamo ceased to operate billions of years ago in the Moon and Mars. Planets and moons differ in tectonic style, from plate-tectonics on Earth to bodies having a stagnant outer lid and possibly solid-state convection underneath, with implications for their magmatic and atmosphere evolution. Knowledge about their deep interiors has improved considerably thanks to a multitude of planetary space missions but, in comparison with Earth, the data base is still limited. We describe methods (including experimental approaches and numerical modeling) and data (e.g., gravity field, rotational state, seismic signals, magnetic field, heat flux, and chemical compositions) used from missions and ground-based observations to explore the deep interiors, their dynamics and evolution and describe as examples Mercury, Venus, Moon, Mars, Ganymede and Enceladus.


Sign in / Sign up

Export Citation Format

Share Document