New Design Formulas of H-Shaped Steel Beam-Columns Subjected to Axial Compressive Force and Bending Moment

Author(s):  
Kobayashi M. ◽  
Tsuda K. ◽  
Kido M. ◽  
Kawano A.
Author(s):  
Haruna Utsunomiya ◽  
Masayuki Haraguchi ◽  
Masae Kido ◽  
Keigo Tsuda

In the design of slender steel beam-columns, the moment amplification factor is used to estimate the maximum moment along with the longitudinal direction. While formulas for evaluating the factor have been presented on the basis of elastic or elastic-plastic analysis, the initial deflection of the column is not considered. The effect that the initial deflection on the strength and behavior of the column has been shown only when the initial deflection shape is half sine wave. This paper discusses the effect of the initial deflection shape on the value of the moment amplification factor by performing the analytical work. The analytical model is the hinged-end beam-column subjected to constant axial compressive force and end moments. First of all, the equilibrium differential equation which governs the problem is solved and the formula for calculating the bending moment is presented. In the parametric study, magnitude of initial deflection, initial deflection shape, axial load ratio, slenderness ratio and end moment ratio are selected as the parameters. In this paper, we discuss the effects of the amount of the initial deflection and the initial deflection shape.


2018 ◽  
Vol 162 ◽  
pp. 04006
Author(s):  
Haitham Al-Thairy

Fire attack is one of the worst scenarios that may cause catastrophic consequences of steel buildings such as progressive collapse and failure. Current design codes and standards have addressed fire as one of the extreme loading conditions to be accounted for in the design of buildings. However, most of the approaches and procedures suggested by these codes and standards still lack accuracy and rationality. The purpose of this paper is to develop an analytical approach to predict the elastic-plastic moment-curvature relationship of steel beam - columns section under elevated temperature. The analytical method was derived based on dividing the steel section to layers and integrating the resistance moment equation of each layer in terms of the section curvature taking into account the effect of elevated temperature on the material properties of the steel by using EC3 reduction factors of the yield stress and modulus of elasticity. The suggested method has been validated against numerical simulation results. Validation results have shown the reliability of the suggested method to predict the resistance moment - curvature relationship of steel beam-column members at different elevated temperatures and under different values of the axial compressive force. The suggested methods may be used to develop more accurate design approaches for steel beam columns under fire condition.


Author(s):  
Haruna Utsunomiya ◽  
Masayuki Haraguchi ◽  
Masae Kido ◽  
Keigo Tsuda

In the design of slender steel beam-columns, the moment amplification factor is used to estimate the maximum bending moment. The formulas for evaluating the factor have been presented on the basis of the elastic or elastic-plastic analysis, however the initial deflection of beam-columns is not considered. This paper discusses the effect of initial deflection on the value of the moment amplification factor by performing the analytical work. The analytical model is a simply supported beam-column subjected to constant axial compressive force and end moments. First of all, the equilibrium differential equation which governs the problem is solved and the formula for calculating the bending moment is obtained. In the parametric study, magnitude of the initial deflection, the axial load ratio, the slenderness ratio and the end moment ratio are selected as the parameters. The effects of magnitude of the initial deflection and the end moment ratio on the moment amplification factor are discussed.


Author(s):  
Jie Gao ◽  
Zengli Peng ◽  
Xin Li ◽  
Jing Zhou ◽  
Wenxing Zhou

Offshore pipelines operating in a harsh environment are usually subjected to combinations of bending moment and axial loadings in addition to internal pressure. Due to the corrosive media transported in the pipelines and corrosive substances within seawater and soil outside the pipelines, local corrosion defects will generate on the pipeline’s inner and outer walls, reducing its ultimate bearing capacity. This paper presents a series of full-scale failure tests and nonlinear finite element analysis (FEA) to study the bending capacity and failure mode of corroded pipelines with outside locally-thinned-areas (LTAs) subjected to combinations of internal pressure, axial compressive force and bending moment. The LTAs are loaded in compression to simulate corrosion. Material tests of API 5L X56 seamless pipe steel were conducted and the stress-strain relationship was obtained. FEA results of the moment versus curvature relation, bending capacity and local buckling behavior of each specimen model matched the experimental results very well, validating the accuracy of this simulation. Additional FEA is then performed to investigate the effect of corrosion geometric parameters, such as corrosion depth, corrosion width, and corrosion length, on the ultimate moment. Among them, the width is of the greatest impact, followed by is the depth, the length impact can be ignored.


Author(s):  
Yong-Lin Pi ◽  
Mark Andrew Bradford ◽  
Kai Luo ◽  
Wei Gao

Because a three-pinned circular arch is statically determinate, when it is subjected to a uniform radial load q, linear in-plane analysis has shown that the uniform load will produce quite simple internal actions: a uniform axial compressive force N = qR and zero-bending moment, where R is the radius of the arch. This is consistent with equations in textbooks for structural mechanics. However, the non-linear behavior and buckling of three-pinned arches are very different from their linear counterparts. The uniform radial load can produce significant bending moments in the three-pinned arches, and the value of the uniform axial compressive force in the three-pinned arches is greater than qR. In addition, it is also shown in this paper that the solutions for the in-plane elastic buckling load of three-pinned arches available in the open literature cannot predict their in-plane buckling loads correctly.


Author(s):  
Yuxiao Liu ◽  
Xin Li ◽  
Jing Zhou ◽  
Hualing Song

Lateral buckling must be considered in exposed HP/HT pipeline design. The snaked-lay method is an effective lateral buckling control method, a new deformation shape of snaked-lay pipeline is presented, and a control criterion of offset angle is also presented. When the offset angle is small or offset angle is large while the pipeline length of snaked-lay is too short or long, the maximum moments of postbuckling pipeline are large. For these problems, a new controlling method combined with snaked-lay and sleeper is proposed, which is named the SS method. Using Ansys, a nonlinear finite element model considering the interaction of seabed-sleeper-pipeline is established. The SS method is proved to be feasible to control lateral buckling for submarine pipelines. Based on critical axial compressive force and maximum bending moment, a design criterion of sleeper height is suggested.


Sign in / Sign up

Export Citation Format

Share Document