Integration of Hidden Markov Modeling and Bayesian Network for Fault Detection and Fault Prediction: An Automotive Case Study

Author(s):  
Morteza Soleimani ◽  
Felician Campean ◽  
Daniel Neagu ◽  
Aleksandr Doikin
Author(s):  
Pratima Saravanan ◽  
Jessica Menold

Objective This research focuses on studying the clinical decision-making strategies of expert and novice prosthetists for different case complexities. Background With an increasing global amputee population, there is an urgent need for improved amputee care. However, current prosthetic prescription standards are based on subjective expertise, making the process challenging for novices, specifically during complex patient cases. Hence, there is a need for studying the decision-making strategies of prosthetists. Method An interactive web-based survey was developed with two case studies of varying complexities. Navigation between survey pages and time spent were recorded for 28 participants including experts ( n = 20) and novices ( n = 8). Using these data, decision-making strategies, or patterns of decisions, during prosthetic prescription were derived using hidden Markov modeling. A qualitative analysis of participants’ rationale regarding decisions was used to add a deep contextualized understanding of decision-making strategies derived from the quantitative analysis. Results Unique decision-making strategies were observed across expert and novice participants. Experts tended to focus on the personal details, activity level, and state of the residual limb prior to prescription, and this strategy was independent of case complexity. Novices tended to change strategies dependent upon case complexity, fixating on certain factors when case complexity was high. Conclusion The decision-making strategies of experts stayed the same across the two cases, whereas the novices exhibited mixed strategies. Application By modeling the decision-making strategies of experts and novices, this study builds a foundation for development of an automated decision-support tool for prosthetic prescription, advancing novice training, and amputee care.


Author(s):  
Qin Tao ◽  
Yajing Si ◽  
Fali Li ◽  
Peiyang Li ◽  
Yuqin Li ◽  
...  

Decision response and feedback in gambling are interrelated. Different decisions lead to different ranges of feedback, which in turn influences subsequent decisions. However, the mechanism underlying the continuous decision-feedback process is still left unveiled. To fulfill this gap, we applied the hidden Markov model (HMM) to the gambling electroencephalogram (EEG) data to characterize the dynamics of this process. Furthermore, we explored the differences between distinct decision responses (i.e. choose large or small bets) or distinct feedback (i.e. win or loss outcomes) in corresponding phases. We demonstrated that the processing stages in decision-feedback process including strategy adjustment and visual information processing can be characterized by distinct brain networks. Moreover, time-varying networks showed, after decision response, large bet recruited more resources from right frontal and right center cortices while small bet was more related to the activation of the left frontal lobe. Concerning feedback, networks of win feedback showed a strong right frontal and right center pattern, while an information flow originating from the left frontal lobe to the middle frontal lobe was observed in loss feedback. Taken together, these findings shed light on general principles of natural decision-feedback and may contribute to the design of biologically inspired, participant-independent decision-feedback systems.


2021 ◽  
pp. 1-67
Author(s):  
Stewart Smith ◽  
Olesya Zimina ◽  
Surender Manral ◽  
Michael Nickel

Seismic fault detection using machine learning techniques, in particular the convolution neural network (CNN), is becoming a widely accepted practice in the field of seismic interpretation. Machine learning algorithms are trained to mimic the capabilities of an experienced interpreter by recognizing patterns within seismic data and classifying them. Regardless of the method of seismic fault detection, interpretation or extraction of 3D fault representations from edge evidence or fault probability volumes is routine. Extracted fault representations are important to the understanding of the subsurface geology and are a critical input to upstream workflows including structural framework definition, static reservoir and petroleum system modeling, and well planning and de-risking activities. Efforts to automate the detection and extraction of geological features from seismic data have evolved in line with advances in computer algorithms, hardware, and machine learning techniques. We have developed an assisted fault interpretation workflow for seismic fault detection and extraction, demonstrated through a case study from the Groningen gas field of the Upper Permian, Dutch Rotliegend; a heavily faulted, subsalt gas field located onshore, NE Netherlands. Supervised using interpreter-led labeling, we apply a 2D multi-CNN to detect faults within a 3D pre-stack depth migrated seismic dataset. After prediction, we apply a geometric evaluation of predicted faults, using a principal component analysis (PCA) to produce geometric attribute representations (strike azimuth and planarity) of the fault prediction. Strike azimuth and planarity attributes are used to validate and automatically extract consistent 3D fault geometries, providing geological context to the interpreter and input to dependent workflows more efficiently.


Sign in / Sign up

Export Citation Format

Share Document