scholarly journals A Extensively drug-resistant Pseudomonas putida bacteremia that was resolved spontaneously

2019 ◽  
Vol 13 (06) ◽  
pp. 577-580
Author(s):  
Hanife Usta Atmaca ◽  
Feray Akbas

Pseudomonas putida (P. putida) is a rare pathogen that causes various infections in newborns, neutropenic and cancer patients, or in patients with risk factors leading to immunosuppresion. Antibiotic resistance in P. putida is seen in growing numbers. Although it is less virulent compared to Pseudomonas aeruginosa, mortal infections are reported. Here, a P. putida case after an invasive procedure in a patient with gastrointestinal malignancy is reported. Although, it caused an antibiotic resistant bacteremia, it resolved spontaneously without any treatment. P. Putida might have lower virulence and a different antibiotic susceptibility when compared to Pseudomonas aeruginosa in different cases. More clinical information is needed for further evaluation.

2016 ◽  
Vol 4 (2) ◽  
Author(s):  
Bhavani Manivannan ◽  
Niranjana Mahalingam ◽  
Sudhir Jadhao ◽  
Amrita Mishra ◽  
Pravin Nilawe ◽  
...  

We present the draft genome assembly of an extensively drug-resistant (XDR) Pseudomonas aeruginosa strain isolated from a patient with a history of genito urinary tuberculosis. The draft genome is 7,022,546 bp with a G+C content of 65.48%. It carries 7 phage genomes, genes for quorum sensing, biofilm formation, virulence, and antibiotic resistance.


Infection ◽  
2014 ◽  
Vol 42 (4) ◽  
pp. 721-728 ◽  
Author(s):  
G. Samonis ◽  
K. Z. Vardakas ◽  
D. P. Kofteridis ◽  
D. Dimopoulou ◽  
A. M. Andrianaki ◽  
...  

2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S294-S295
Author(s):  
Mohamad Yasmin ◽  
Mark D Adams ◽  
Steven Marshall ◽  
Lilian Abbo ◽  
Jacquelynn Benjamino ◽  
...  

Abstract Background Chronic respiratory infection due to extensively drug-resistant Pseudomonas aeruginosa (XDR-Pa) is a significant cause of mortality in cystic fibrosis (CF) patients. The CF respiratory anatomy, chronic antibiotic use, and PA colonization creates a milieu for high evolutionary pressure and genetic diversity. We sought to explore the progression of antibiotic resistance and genome evolution of XDR-Pa in a longitudinal series of isolates collected from an18-year-old CF patient who underwent lung transplantation. Methods Consecutive respiratory isolates were collected from December 2016 to March 2018. Standard disk diffusion methods were used to evaluate antimicrobial susceptibility. Whole-genome sequencing (WGS) data were obtained on an Illumina NextSeq and assembled. Variants were identified using the GATK HaplotypeCaller and their functional impact was determined using snpEff. Maximum likelihood phylogenetic trees were constructed using MEGA and BEAST. Panther was used to test for enrichment of Gene Ontology functional categories among mutated genes. Results Phylogenetic analysis of complete genome sequences showed that 18 isolates formed a monophyletic group. Analysis using BEAST showed that genomes shared a common ancestor that was present prior to transplant. Over 300 single nucleotide variants and small insertion-deletion mutations were found, in comparison with a reconstruction of the ancestral sequence (Figure 1). Shared patterns of antibiotic susceptibility profiles were largely concordant with phylogenetic clustering and trended toward a decrease in susceptibility over time. Two different frameshift mutations in the DNA mismatch repair gene mutL were found in 15 genomes and these exhibited an increased rate of transition to transversion mutations, consistent with a hypermutator phenotype. Conclusion WGS of XDR-Pa identified variations in antibiotic resistance and virulence genes. Changes in mutL likely accelerated the accumulation of mutations. Multiple related sub-groups of strains appear to have been circulating prior to transplant and continued to diverge during the treatment period. Correlating antibiotic pressure, susceptibility profiles, and WGS in XDR-Pa from a single patient reveals the clinical impact of genomic evolution in CF. Disclosures All authors: No reported disclosures.


PLoS ONE ◽  
2018 ◽  
Vol 13 (2) ◽  
pp. e0193431 ◽  
Author(s):  
Nattawan Palavutitotai ◽  
Anupop Jitmuang ◽  
Sasima Tongsai ◽  
Pattarachai Kiratisin ◽  
Nasikarn Angkasekwinai

2020 ◽  
Vol 71 (Supplement_4) ◽  
pp. S386-S393
Author(s):  
Yuanqi Zhao ◽  
Qingsong Lin ◽  
Li Liu ◽  
Runzhi Ma ◽  
Juan Chen ◽  
...  

Abstract Background Pseudomonas aeruginosa (PA) bloodstream infection (BSI) is a common complication in patients with acute leukemia (AL), and the prevalence of antibiotic-resistant strains poses a serious problem. However, there is limited information regarding antibiotic resistance, clinical characteristics, and outcomes of PA BSI in AL patients. This study explored characteristics associated with the clinical outcomes of AL patients with PA BSI and analyzed factors associated with BSI caused by multidrug-resistant (MDR) or carbapenem-resistant strains. Methods This single-center retrospective study enrolled hospitalized AL patients who developed PA BSI during January 2014–December 2019. The Kaplan-Meier method was used to plot survival curves. Multivariate logistic regression analyses were also performed. Results Of 293 eligible patients with PA BSI, 55 (18.8%) received inappropriate empirical antibiotic therapy within 48 hours of BSI onset, whereas up to 65.8% MDR-PA BSI patients received inappropriate empirical treatment. The 30-day mortality rate was 8.5% for all patients. However, the 30-day mortality rates were 28.9% and 5.5% in MDR-PA BSI and non–MDR-PA BSI patients, respectively (P < .001). On multivariate analysis, previous use of quinolones (odds ratio [OR], 5.851 [95% confidence interval {CI}, 2.638–12.975]) and piperacillin/tazobactam (OR, 2.837 [95% CI, 1.151–6.994]) were independently associated with MDR-PA BSI; and MDR-PA BSI (OR, 7.196 [95% CI, 2.773–18.668]), perianal infection (OR, 4.079 [95% CI, 1.401–11.879]), pulmonary infection (OR, 3.028 [95% CI, 1.231–7.446]), and age ≥55 years (OR, 2.871 [95% CI, 1.057–7.799]) were independent risk factors for 30-day mortality. Conclusions MDR increases mortality risk in PA BSI patients, and previous antibiotic exposure is important in MDR-PA BSI development. Rational antibiotic use based on local antimicrobial susceptibility and clinical characteristics can help reduce antibiotic resistance and mortality.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S794-S795
Author(s):  
Mary Francine P Chua ◽  
Syeda Sara Nida ◽  
Jerry Lawhorn ◽  
Janak Koirala

Abstract Background Multidrug-resistant (MDR) and extensively drug-resistant (XDR) Pseudomonas aeruginosa (PA) have limited therapeutic options for treatment. Ceftolozane/tazobactam is a newer anti-pseudomonal drug effective against resistant PA infections, however resistance against this drug has now also developed and is increasing. In this study, we explored the combination of ceftolozane/tazobactam (CT) and meropenem (MP) as a possible effective regimen against MDR and XDR PA. Methods We obtained 33 non-duplicate isolates of MDR and XDR PA grown from blood, urine and respiratory samples collected from patients admitted between 2015 and 2019 at our two affiliate teaching hospitals. MDR PA was defined as resistance to 3 or more classes of anti-pseudomonal antibiotics, and XDR PA as resistance to all but two or less classes of anti-pseudomonal antibiotics. Antimicrobial preparations of both MP and CT were made according to manufacturer instructions. Susceptibility testing was performed using the checkerboard method in accordance to CLSI guidelines (CLSI M100, 2017). The ATCC 27853 strain of PA used as control. Synergy, additive effect, indifference and antagonism were defined as FIC (fractional inhibitory concentration) indices of ≤0.5, >0.5 to <1, >1 to <4, and >4, respectively. Results Thirteen (39%) of 33 PA isolates were classified as XDR, while 20 (61%) PA isolates were MDR. All isolates were resistant to MP (MIC50 >32 ug/mL), while only 2 (6%) isolates were susceptible to CT (MIC50 64 ug/mL). A synergistic effect was seen in 9 (27.3%) of PA isolates (FIC index range 0.28 to 0.5)— 2 of which were XDR PA, and 7 were MDR PA. An additive effect was seen in 12 (36.4%), with indifference seen in 12 (36.4%) of isolates. In this study, no antagonism was seen when CT and MP were combined. Conclusion When used in combination, CT and MP can exert a synergistic effect against MDR and XDR PA. Additive effect and indifference can also be seen when both antibiotics were used. Moreover, there was no antagonism seen when both antibiotics were combined. This study shows that the use of CT and MP in combination may be an option against XDR and MDR PA infections. Disclosures All Authors: No reported disclosures


2021 ◽  
Vol 25 ◽  
pp. 151-153
Author(s):  
Daniela Cristina Tartari ◽  
Caetana Paes Zamparette ◽  
Graciele Martini ◽  
Sandra Christakis ◽  
Luiz Henrique Costa ◽  
...  

2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Helio S. Sader ◽  
Mariana Castanheira ◽  
Dee Shortridge ◽  
Rodrigo E. Mendes ◽  
Robert K. Flamm

ABSTRACT The in vitro activity of ceftazidime-avibactam and many comparator agents was determined against various resistant subsets of organisms selected among 36,380 Enterobacteriaceae and 7,868 Pseudomonas aeruginosa isolates. The isolates were consecutively collected from 94 U.S. hospitals, and all isolates were tested for susceptibility by reference broth microdilution methods in a central monitoring laboratory (JMI Laboratories). Enterobacteriaceae isolates resistant to carbapenems (CRE) and/or ceftazidime-avibactam (MIC ≥ 16 μg/ml) were evaluated for the presence of genes encoding extended-spectrum β-lactamases and carbapenemases. Ceftazidime-avibactam inhibited >99.9% of all Enterobacteriaceae at the susceptible breakpoint of ≤8 μg/ml and was active against multidrug-resistant (MDR; n = 2,953; MIC50/90, 0.25/1 μg/ml; 99.2% susceptible), extensively drug-resistant (XDR; n = 448; MIC50/90, 0.5/2 μg/ml; 97.8% susceptible), and CRE (n = 513; MIC50/90, 0.5/2 μg/ml; 97.5% susceptible) isolates. Only 82.2% of MDR Enterobacteriaceae (n = 2,953) and 64.2% of ceftriaxone-nonsusceptible Klebsiella pneumoniae (n = 1,063) isolates were meropenem susceptible. Among Enterobacter cloacae (22.2% ceftazidime nonsusceptible), 99.8% of the isolates, including 99.3% of the ceftazidime-nonsusceptible isolates, were ceftazidime-avibactam susceptible. Only 23 of 36,380 Enterobacteriaceae (0.06%) isolates were ceftazidime-avibactam nonsusceptible, including 9 metallo-β-lactamase producers and 2 KPC-producing strains with porin alteration; the remaining 12 strains showed negative results for all β-lactamases tested. Ceftazidime-avibactam showed potent activity against P. aeruginosa (MIC50/90, 2/4 μg/ml; 97.1% susceptible), including MDR (MIC50/90, 4/16 μg/ml; 86.5% susceptible) isolates, and inhibited 71.8% of isolates nonsusceptible to meropenem, piperacillin-tazobactam, and ceftazidime (n = 628). In summary, ceftazidime-avibactam demonstrated potent activity against a large collection (n = 44,248) of contemporary Gram-negative bacilli isolated from U.S. patients, including organisms resistant to most currently available agents, such as CRE and meropenem-nonsusceptible P. aeruginosa.


2018 ◽  
Vol 15 ◽  
pp. 136-139 ◽  
Author(s):  
Olga Rodríguez-Núñez ◽  
Marco Ripa ◽  
Laura Morata ◽  
Cristina de la Calle ◽  
Celia Cardozo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document