Preparation and Characterization of Silica-modified Titanium Dioxide Nanoparticles by Co-precipitation Method

2005 ◽  
Vol 21 (03) ◽  
pp. 229-233 ◽  
Author(s):  
LI Zhi-Jie ◽  
◽  
HOU Bo ◽  
XU Yao ◽  
WU Dong ◽  
...  
2015 ◽  
Vol 1112 ◽  
pp. 313-316 ◽  
Author(s):  
Irana Eka Putri ◽  
Herny Ariesta Budiarti ◽  
Dyah Sawitri ◽  
Doty D. Risanti

Phase transformation of TiO2 (titanium dioxide) nanoparticles has been analyzed by observing the effect of NaCl addition to the anatase-to-rutile phase transformation. NaCl is one of key points in the transformation of rutile. Co-precipitation method was employed in which TiCl3 as precursor was reacted with HCl 2M and subsequent NH4OH. Three methods were studied, namely solution without NaCl addition (TiCl3 + HCl + NH4OH) as control solution subjected to route A (TiCl3 + HCl – NaCl– NH4OH – heated at 600°C for 5 hours) and route B (TiCl3 + NaCl – heated 200°C for 5 hours – NH4OH – heated 200°C for 6 hours). Route B was subjected to heating at 200°C. The results show that without NaCl it enhanced the crystal growth of the rutile embryos allowing the ease of rutile formation at 600°C, while route A promoted the transformation of brookite and hindered anatase-to-rutile transformation as indicated by the presence of anatase at 1000°C. On the other hand route B is potential for being further explored.


2020 ◽  
Vol 3 (1) ◽  
pp. 30-33
Author(s):  
Muthulakshmi M ◽  
Madhumitha G

Nanotechnology is a field of applied science focused on design, synthesis and characterization of nanomaterials. The nickel and magnesium have improved their applications in transparent electrodes and nano electronics. In addition, magnesium oxide has moisture resistance and high melting point properties. In the present work has been carried out in the development of green crystalline powder of nickel doped magnesium oxide nanoparticles by Co-precipitation method, from the mixture of nickel chloride and magnesium chloride with KOH as solvent. From the XRD results, crystalline size of the particle can be observed. Spherical structure of Ni doped MgO nanoparticles were indicated by SEM results and powdered composition of samples were obtained from FTIR. EDAX represents the peak composition of the nanoparticle. The above analytical techniques have confirmed that the Ni doped MgO nanoparticles obtained from the mixture of NiCl2 and MgCl2.


MRS Advances ◽  
2017 ◽  
Vol 2 (64) ◽  
pp. 4025-4030 ◽  
Author(s):  
T. Kryshtab ◽  
H. A. Calderon ◽  
A. Kryvko

ABSTRACTThe microstructure of Ni-Mg-Al mixed oxides obtained by thermal decomposition of hydrotalcite-like compounds synthesized by a co-precipitation method has been studied by using X-ray diffraction (XRD) and atomic resolution transmission electron microscopy (TEM). XRD patterns revealed the formation of NixMg1-xO (x=0÷1), α-Al2O3 and traces of MgAl2O4 and NiAl2O4 phases. The peaks profile analysis indicated a small grain size, microdeformations and partial overlapping of peaks due to phases with different, but similar interplanar spacings. The microdeformations point out the presence of dislocations and the peaks shift associated with the presence of excess vacancies. The use of atomic resolution TEM made it possible to identify the phases, directly observe dislocations and demonstrate the vacancies excess. Atomic resolution TEM is achieved by applying an Exit Wave Reconstruction procedure with 40 low dose images taken at different defocus. The current results suggest that vacancies of metals are predominant in MgO (NiO) crystals and that vacancies of Oxygen are predominant in Al2O3 crystals.


2017 ◽  
Vol 43 (15) ◽  
pp. 12120-12125 ◽  
Author(s):  
S.A.N.H. Lavasani ◽  
O. Mirzaee ◽  
H. Shokrollahi ◽  
A.K. Moghadam ◽  
M. Salami

2014 ◽  
Vol 15 (8) ◽  
pp. 593-605 ◽  
Author(s):  
Zhuan-xi Luo ◽  
Zhen-hong Wang ◽  
Bin Xu ◽  
Ionnis L. Sarakiotis ◽  
Gijs Du Laing ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document