scholarly journals Molecular Dynamics Simulation of Reverse-Osmotic Salt Rejection and Water Transport through Double-Walled Carbon Nanotube

2015 ◽  
Vol 31 (6) ◽  
pp. 1025-1034
Author(s):  
SHEN Zhuang-Lin ◽  
◽  
HE Gao-Hong ◽  
ZHANG Ning ◽  
HAO Ce
Author(s):  
Mohammad Moulod ◽  
Gisuk Hwang

Fundamental understanding of the water in graphene is crucial to optimally design and operate the sustainable energy, water desalination, and bio-medical systems. A numerous atomic-scale studies have been reported, primarily articulating the surface interactions (interatomic potentials) between the water and graphene. However, a systematic comparative study among the various interatomic potentials is rare, especially for the water transport confined in the graphene nanostructure. In this study, the effects of different interatomic potentials and gap sizes on water self-diffusivity are investigated using the molecular dynamics simulation at T = 300 K. The water is confined in the rigid graphene nanogap with the various gap sizes Lz = 0.7 to 4.17 nm, using SPC/E and TIP3P water models. The water self-diffusivity is calculated using the mean squared displacement approach. It is found that the water self-diffusivity in the confined region is lower than that of the bulk water, and it decreases as the gap size decreases and the surface energy increases. Also, the water self-diffusivity nearly linearly decreases with the increasing surface energy to reach the bulk water self-diffusivity at zero surface energy. The obtained results provide a roadmap to fundamentally understand the water transport properties in the graphene geometries and surface interactions.


2019 ◽  
Vol 21 (16) ◽  
pp. 8529-8542 ◽  
Author(s):  
Pooja Sahu ◽  
Sk. Musharaf Ali ◽  
K. T. Shenoy ◽  
S. Mohan

Nanotube appended membranes are shown to be very promising due to their ultrafast water transport and very high salt rejection ability.


Author(s):  
Mohsen Motamedi ◽  
AH Naghdi ◽  
SK Jalali

Composite materials have become popular because of high mechanical properties and lightweight. Aluminum/carbon nanotube is one of the most important metal composite. In this research, mechanical properties of aluminum/carbon nanotube composite were obtained using molecular dynamics simulation. Then, effect of temperature on stress–strain curve of composite was studied. The results showed by increasing temperature, the Young’s modulus of composite was decreased. More specifically increasing the temperature from 150 K to 620 K, decrease the Young’s modulus to 11.7%. The ultimate stress of composite also decreased by increasing the temperature. A continuum model of composite was presented using finite element method. The results showed the role of carbon nanotube on strengthening of composite.


Sign in / Sign up

Export Citation Format

Share Document