scholarly journals The Effect of Ophiocephalus striatus sp. Extract on Nitric Oxide in Ischemic Stroke Model

2021 ◽  
Vol 9 (T3) ◽  
pp. 68-74
Author(s):  
Iskandar Nasution ◽  
Hasan Sjahrir ◽  
Syafruddin Ilyas ◽  
Muhammad Ichwan

BACKGROUND: One of alternative medicine in stroke therapy is Ophiocephalus striatus sp. extract. The nutrients contained in the O. striatus sp. extract, namely amino acids, fatty acids, cuprum, and zinc, are useful for the process of angiogenesis in poststroke patients through increased endothelial nitric oxide synthase. AIM: We hypothesized that there was an effect of giving O. striatus sp. extract to cerebral angiogenesis process of Sprague Dawley rats ischemic stroke models through the level of NO. METHODS: This was evidenced by conducting experimental studies on rats ischemic stroke models which were divided into five groups, (a) K (−) group (no ligation, no treatment), (b) K (+) group (ligation, no treatment), (c) P1 group (ligation, 200 mg extract), (d) P2 group (ligation, 400 mg extract), and (e) P3 group (ligation, 800 mg extract). Then blood sample was taken on day 3 to assess levels of NO. RESULTS: There was increased level of NO in P1 (p = 0.001), P2 (p < 0.001), and P3 (p < 0.001) groups compared to K (+) group. The level of NO increases along with the increasing dose of O. striatus sp. extract. Histological examination revealed that there was formation of new blood vessel in the P1, P2, and P3 groups compared to K (+) group. CONCLUSION: Our study showed that O. striatus sp. extract improves cerebral angiogenesis in rat models of ischemic stroke.

2010 ◽  
Vol 299 (5) ◽  
pp. R1387-R1395 ◽  
Author(s):  
Francisca Rodríguez ◽  
Susana Nieto-Cerón ◽  
Francisco J. Fenoy ◽  
Bernardo López ◽  
Isabel Hernández ◽  
...  

Females. suffer a less severe ischemic acute renal failure than males, apparently because of higher nitric oxide (NO) bioavailability and/or lower levels of oxidative stress. Because the renal ischemic injury is associated with outer medullary (OM) endothelial dysfunction, the present study evaluated sex differences in OM changes of NO and peroxynitrite levels (by differential pulse voltammetry and amperometry, respectively) during 45 min of ischemia and 60 min of reperfusion in anesthetized Sprague-Dawley rats. Endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) protein expression and their phosphorylated forms [peNOS(Ser1177) and pnNOS(Ser1417)], 3-nitrotyrosine, reduced sulfhydryl groups (-SH), and glomerular filtration rate (GFR) were also determined. No sex differences were observed in monomeric eNOS and nNOS expression, NO, or 3-nitrotyrosine levels in nonischemic kidneys, but renal -SH content was higher in females. Ischemia increased dimeric/monomeric eNOS and nNOS ratio more in females, but the dimeric phosphorylated peNOS(Ser1177) and pnNOS(Ser1417) forms rose similarly in both sexes, indicating no sex differences in nitric oxide synthase activation. However, NO levels increased more in females than in males (6,406.0 ± 742.5 and 4,058.2 ± 272.35 nmol/l respectively, P < 0.05), together with a lower increase in peroxynitrite current (5.5 ± 0.7 vs. 12.7 ± 1.5 nA, P < 0.05) and 3-nitrotyrosine concentration, (28.7 ± 3.7 vs. 48.7 ± 3.7 nmol/mg protein, P < 0.05) in females than in males and a better preserved GFR after ischemia in females than in males (689.7 ± 135.0 and 221.4 ± 52.5 μl·min−1·g kidney wt−1, P < 0.01). Pretreatment with the antioxidants N-acetyl-l-cysteine or ebselen abolished sex differences in peroxynitrite, nitrotyrosine, and GFR, suggesting that a greater oxidative and nitrosative stress worsens renal damage in males.


1995 ◽  
Vol 269 (4) ◽  
pp. R807-R813 ◽  
Author(s):  
T. Hirai ◽  
T. I. Musch ◽  
D. A. Morgan ◽  
K. C. Kregel ◽  
D. E. Claassen ◽  
...  

Recent studies have suggested that the interaction between the sympathetic nervous system and nitric oxide (NO) or nitrosyl factors may be an important means by which arterial blood pressure is regulated. We investigated whether NO synthase (NOS) inhibition modulates basal sympathetic nerve discharge (SND) in baroreceptor-innervated and -denervated, chloralose-anesthetized Sprague-Dawley rats. We recorded mean arterial pressure (MAP), renal SND, and lumbar SND before and after administration of the NOS inhibitor, NG-nitro-L-arginine methyl ester (L-NAME, 20 mg/kg iv). Two minutes after L-NAME administration in baroreceptor-innervated rats, MAP increased (+23 +/- 3 mmHg), whereas renal (-45 +/- 6%, n = 7) and lumbar (-35 +/- 2%, n = 6) SND significantly decreased from control levels. These changes persisted for up to 20 min after L-NAME administration. In baroreceptor-denervated rats, L-NAME increased MAP (+40 +/- 6 mmHg) and decreased lumbar SND (n = 7) (-37 +/- 10% from control at 20 min post-L-NAME). In contrast, renal SND progressively increased (+33 +/- 8% at 20 min post-L-NAME) from control after L-NAME administration in baroreceptor-denervated rats (n = 7). These results demonstrate that NOS inhibition can produce nonuniform changes in SND in baroreceptor-denervated rats and suggest that endogenous nitrosyl factors provide tonic excitation to lumbar SND, whereas they provide a tonic restraint to renal SND.


2020 ◽  
Vol 319 (2) ◽  
pp. F192-F201
Author(s):  
Lindsey A. Ramirez ◽  
Ellen E. Gillis ◽  
Jacqueline B. Musall ◽  
Riyaz Mohamed ◽  
Elizabeth Snyder ◽  
...  

We have previously shown that hypertensive female rats have more regulatory T cells (Tregs), which contribute more to blood pressure (BP) control in female versus male rats. Based on known protective properties of Tregs, the goal of the present study was to investigate the mechanisms by which female rats maintain Tregs. The present study was designed to 1) compare the impact of three hypertension models on the percentage of renal Tregs and 2) test the hypothesis that nitric oxide synthase (NOS) inhibition prevents increases in renal Tregs and exacerbates renal damage in female Sprague-Dawley rats. Rats (11–14 wk old) were randomized to one of the following four groups: control, norepinephrine (NE) infusion, angiotensin II infusion, or the NOS inhibitor Nω-nitro-l-arginine methyl ester (l-NAME) in drinking water. BP was measured via tail cuff. After 2 wk of treatment, kidneys were isolated and processed to measure Tregs via flow cytometric analysis and renal injury via urinary albumin excretion, plasma creatinine, and histological analyses. Hypertensive treatments increased BP in all experimental animals. Increases in BP in norepinephrine-and angiotensin II-treated rats were associated with increases in renal Tregs versus control. In contrast, l-NAME treatment decreased Tregs compared with all groups. l-NAME treatment modestly increased albumin excretion. However, plasma creatinine was comparable among the groups, and there was no histological evidence of glomerular or tubular injury. This study provides insights into the mechanisms regulating renal Tregs and supports that an intact NOS system is crucial for female rats to have BP-related increases in renal Tregs.


2005 ◽  
Vol 288 (1) ◽  
pp. H256-H262 ◽  
Author(s):  
Ana Carolina Rodrigues Dias ◽  
Melissa Vitela ◽  
Eduardo Colombari ◽  
Steven W. Mifflin

The neuromodulatory effect of NO on glutamatergic transmission has been studied in several brain areas. Our previous single-cell studies suggested that NO facilitates glutamatergic transmission in the nucleus of the solitary tract (NTS). In this study, we examined the effect of the nitric oxide synthase (NOS) inhibitor NG-nitro-l-arginine methyl ester (l-NAME) on glutamatergic and reflex transmission in the NTS. We measured mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) from Inactin-anesthetized Sprague-Dawley rats. Bilateral microinjections of l-NAME (10 nmol/100 nl) into the NTS did not cause significant changes in basal MAP, HR, or RSNA. Unilateral microinjection of ( RS)-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA, 1 pmol/100 nl) into the NTS decreased MAP and RSNA. Fifteen minutes after l-NAME microinjections, AMPA-evoked cardiovascular changes were significantly reduced. N-methyl-d-aspartate (NMDA, 0.5 pmol/100 nl) microinjection into the NTS decreased MAP, HR, and RSNA. NMDA-evoked falls in MAP, HR, and RSNA were significantly reduced 30 min after l-NAME. To examine baroreceptor and cardiopulmonary reflex function, l-NAME was microinjected at multiple sites within the rostro-caudal extent of the NTS. Baroreflex function was tested with phenylephrine (PE, 25 μg iv) before and after l-NAME. Five minutes after l-NAME the decrease in RSNA caused by PE was significantly reduced. To examine cardiopulmonary reflex function, phenylbiguanide (PBG, 8 μg/kg) was injected into the right atrium. PBG-evoked hypotension, bradycardia, and RSNA reduction were significantly attenuated 5 min after l-NAME. Our results indicate that inhibition of NOS within the NTS attenuates baro- and cardiopulmonary reflexes, suggesting that NO plays a physiologically significant neuromodulatory role in cardiovascular regulation.


Meta Gene ◽  
2014 ◽  
Vol 2 ◽  
pp. 349-357 ◽  
Author(s):  
Brehima Diakite ◽  
Khalil Hamzi ◽  
Ilham Slassi ◽  
Mohammed EL Yahyaoui ◽  
Moulay M.F. EL Alaoui ◽  
...  

Endocrinology ◽  
2014 ◽  
Vol 156 (2) ◽  
pp. 638-646 ◽  
Author(s):  
Lindsay H. Bergeron ◽  
Jordan M. Willcox ◽  
Faisal J. Alibhai ◽  
Barry J. Connell ◽  
Tarek M. Saleh ◽  
...  

The pregnancy hormone relaxin protects tissue from ischemic damage. The ability of relaxin-3, a relaxin paralog, to do so has not been explored. The cerebral expression levels of these peptides and their receptors make them logical targets for study in the ischemic brain. We assessed relaxin peptide-mediated protection, relative relaxin family peptide receptor (RXFP) involvement, and protective mechanisms. Sprague-Dawley rats receiving permanent (pMCAO) or transient middle cerebral artery occlusions (tMCAO) were treated with relaxin peptides, and brains were collected for infarct analysis. Activation of the endothelial nitric oxide synthase pathway was evaluated as a potential protective mechanism. Primary cortical rat astrocytes were exposed to oxygen glucose deprivation and treated with relaxin peptides, and viability was examined. Receptor involvement was explored using RXFP3 antagonist or agonist treatment and real-time PCR. Relaxin and relaxin-3 reduced infarct size after pMCAO. Both peptides activated endothelial nitric oxide synthase. Because relaxin-3 has not previously been associated with this pathway and displays promiscuous RXFP binding, we explored the receptor contribution. Expression of rxfp1 was greater than that of rxfp3 in rat brain, although peptide binding at either receptor resulted in similar overall protection after pMCAO. Only RXFP3 activation reduced infarct size after tMCAO. In astrocytes, rxfp3 gene expression was greater than that of rxfp1. Selective activation of RXFP3 maintained astrocyte viability after oxygen glucose deprivation. Relaxin peptides are protective during the early stages of ischemic stroke. Differential responses among treatments and models suggest that RXFP1 and RXFP3 initiate different protective mechanisms. This preliminary work is a pivotal first step in identifying the clinical implications of relaxin peptides in ischemic stroke.


2017 ◽  
Vol 18 (2) ◽  
pp. 147032031770665 ◽  
Author(s):  
Ning-Ping Wang ◽  
James Erskine ◽  
Wei-Wei Zhang ◽  
Rong-Hua Zheng ◽  
Li-Hui Zhang ◽  
...  

Introduction: The purpose of this study was to determine whether macrophages migrated from the spleen are associated with angiotensin II-induced cardiac fibrosis and hypertension. Methods: Sprague-Dawley rats were subjected to angiotensin II infusion in vehicle (500 ng/kg/min) for up to four weeks. In splenectomy, the spleen was removed before angiotensin II infusion. In the angiotensin II AT1 receptor blockade, telmisartan was administered by gastric gavage (10 mg/kg/day) during angiotensin II infusion. The heart and aorta were isolated for Western blot analysis and immunohistochemistry. Results: Angiotensin II infusion caused a significant reduction in the number of monocytes in the spleen through the AT1 receptor-activated monocyte chemoattractant protein-1. Comparison of angiotensin II infusion, splenectomy and telmisartan comparatively reduced the recruitment of macrophages into the heart. Associated with this change, transforming growth factor β1 expression and myofibroblast proliferation were inhibited, and Smad2/3 and collagen I/III were downregulated. Furthermore, interstitial/perivascular fibrosis was attenuated. These modifications occurred in coincidence with reduced blood pressure. At week 4, invasion of macrophages and myofibroblasts in the thoracic aorta was attenuated and expression of endothelial nitric oxide synthase was upregulated, along with a reduction in aortic fibrosis. Conclusions: These results suggest that macrophages when recruited into the heart and aorta from the spleen potentially contribute to angiotensin II-induced cardiac fibrosis and hypertension.


Sign in / Sign up

Export Citation Format

Share Document