scholarly journals The Diffusion Potential between Dilute Solutions and Concentrated Solutions of Potassium Chloride plus Potassium Nitrate.

1949 ◽  
Vol 3 ◽  
pp. 445-458 ◽  
Author(s):  
K. V. Grove-Rasmussen ◽  
Børge Nygaard ◽  
Terttu Laaksonen ◽  
Maire Hakala
2020 ◽  
Vol 04 ◽  
Author(s):  
Vigen G. Barkhudaryan ◽  
Gayane V. Ananyan ◽  
Nelli H. Karapetyan

Background: The processes of destruction and crosslinking of macromolecules occur simultaneously under the influence of ultraviolet (UV) radiation in synthetic polymers, dry DNA and their concentrated solutions. Objective: The effect of UV radiation on calf thymus DNA in dilute solutions subjected to UV- irradiation was studied in this work. Method: The calf thymus DNA was studied in dilute solutions using viscometry, absorption spectroscopy and electrophoresis. Results: It was shown, that at a low concentration of DNA in the buffer solution ([DNA] = 85 μg / ml) under the influence of UV radiation, the processes of destruction of macromolecules and an increase in their flexibility predominate, which is accompanied by a gradual decrease in the viscosity of their solution. In addition, due to the low concentration of the solution, intramolecular crosslinking of macromolecules predominates, which also reduces their size and, consequently, the viscosity of the solution. Conclusion: It was concluded, that in dilute DNA solutions, due to the predominance of the processes of intramolecular crosslinking of macromolecules over intermolecular, only constant processes of decreasing the sizes of DNA macromolecules occur. As a result, its solubility remains virtually unchanged during UV irradiation. The described comments are also excellently confirmed by the results of absorption spectroscopy and electrophoresis


1988 ◽  
Vol 66 (9) ◽  
pp. 2244-2249 ◽  
Author(s):  
Petr Pacák ◽  
Zdenĕk Kodejš

Densities and refractive indices of highly concentrated solutions of ammonium and potassium thiocyanates in water and dimethylsulphoxide have been measured at 333.2 K in the composition range from xs = 0.01 up to saturated solutions. Molar volumes and apparent molar volumes have been calculated from density measurements and their concentration dependences are discussed. All the systems are volumetrically non-ideal and exhibit negative deviations from additivity. The molar refractivities were calculated from the refractive indices using the Lorentz–Lorenz equation. The refractivity values of individual ions were estimated in infinitely dilute solutions and were used for discussion of ion–solvent interactions.


1955 ◽  
Vol 8 (2) ◽  
pp. 158 ◽  
Author(s):  
JR Hall ◽  
RA Plowman

The polarographic reduction of tris(ethylenediamine)platinum(IV) and the hexammineplatinum(IV) ions has been studied in potassium chloride, potassium nitrate, and potassium nitrate plus ammonia solutions. Both ions were reduced irreversibly producing similarly shaped waves, showing well-defined diffusion current regions corresponding to two-electron reductions of the complexes. A linear relationship existed between diffusion current and concentration within the range examined. In aqueous potassium chloride and potassium nitrate media, the waves contained slight inflexions at positions corresponding to one-electron additions. The phenomenon suggested the transient presence of platinum(III) ions, and indicated that the half-wave potential of the reduction of the complexes to the trivalent state was very close to the half-wave potential of the reduction from platinum(IV) to platinum(II). The values were so close together as to indicate the improbability of isolating the trivalent complexes. Gelatin enhanced the inflexion in the wave but shifted the wave in a more negative direction. An increased concentration of supporting electrolyte also shifted the wave to a more negative position. In all cases a continuous discharge began at about -1.3 V (v. S.C.E.). This discharge was so far removed from that of the potassium ions of the supporting electrolyte that it was attributed to the discharge of hydrogen. Since the initial reduction of the platinum complexes corresponded to a two-electron change, it can be represented by reduction to a tetrammine ion. It is postulated that at higher applied potentials (namely, -1.3 V v. S.C.E.) the reduction proceeded further, producing platinum metal. This platinum metal would be in an active state, insoluble in mercury, and being on the surface, would lower the overvoltage of hydrogen leading to its discharge at a more positive potential than on a pure mercury surface. This view was supported by the fact that gas bubbles were observed at the dropping electrode when a voltage greater than -1.3 V was applied to the electrode for some time. When ammonia was added to the supporting electrolyte, a wave, without an inflexion, and corresponding to an irreversible two-electron reduction, was obtained at more negative potentials. The bivalent tetrammineplatinum(II) and bis(ethylenediamine)platinum(II) ions also gave polarograms showing the continuous discharge of hydrogen.


In a previous paper it was shown that if dilute solutions of potassium chloride were allowed to act upon metallic zinc in the presence of oxygen, the corrosion-time curves obtained by means of the observed absorption of oxygen gas were exponential for part of their course. The reason why this particular form of curve was obtained was considered to be the gradual falling off in the concentration of chlorine ions in the experimental conditions of limited volume of solution. For N/10000 and N/5000 solutions the agreement between the experimental and calculated curves was satisfactory up to about 25 days except for a short initial period of two or three days. After about 25 days the experimental curves fell notably below the calculated values, and the suggestion that the reason for this discrepancy was mainly the barring out of chlorine ions from the anodic areas by means of accumulations of corrosion products received some support from the fact that chlorine ions were actually found in solution even after long periods of experiment with the N/5000 solution, in which this discrepancy was most pronounced, but since none were found in the more dilute solutions it seemed probable that some other factor was also operative.


1988 ◽  
Vol 134 ◽  
Author(s):  
Guy C. Berry

ABSTRACTCertain aspects of the physical chemistry of solutions rodlike polymers are reviewed. The range of concentrations includes infinite dilution ([ŋ]c<<l), dilute solutions ([ŋ,]c<l), moderately concentrated solutions (l<[ŋ]c<[ŋ]cNI), and concentrated solutions (c<cN,), where [ŋ] is the intrinsic viscosity and cNI. is the concentration required for a stable nematic phase. Studies of chain conformation are emphasized at infinite dilution, and rheological behavior is emphasized for more concentrated isotropic and nematic solutions. Both theoretical and experimental considerations are included.


1906 ◽  
Vol 45 (1) ◽  
pp. 241-259 ◽  
Author(s):  
John Gibson

Although great advances have been made during the last thirty years in our knowledge of dilute solutions, there has been no corresponding advance in respect of concentrated solutions. This is primarily due to the fact that hitherto no simple and general relationship has been discovered between the conductivity and the concentration of concentrated solutions of electrolytes. Ostwald's law of dilution holds only for dilute solutions of weak electrolytes, and the formulæ of Rudolphi and Van T'Hoff are applicable only to dilute solutions of good electrolytes. It seems therefore important to inquire whether the difficulty may not be to some extent overcome by an alteration in the mode of representing the facts.


Sign in / Sign up

Export Citation Format

Share Document