scholarly journals Porcine reproductive and respiratory syndrome virus suppresses post-transcriptionally the protein expression of IFN-β by upregulating cellular microRNAs in porcine alveolar macrophages in vitro

Author(s):  
Lilin Wang ◽  
Lei Zhou ◽  
Dongmei Hu ◽  
Xinna Ge ◽  
Xin Guo ◽  
...  
2015 ◽  
Vol 180 (1-2) ◽  
pp. 28-35 ◽  
Author(s):  
Lenka Kavanová ◽  
Jana Prodělalová ◽  
Kateřina Nedbalcová ◽  
Ján Matiašovic ◽  
Jiří Volf ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (3) ◽  
pp. e91918 ◽  
Author(s):  
Bouabid Badaoui ◽  
Teresa Rutigliano ◽  
Anna Anselmo ◽  
Merijn Vanhee ◽  
Hans Nauwynck ◽  
...  

2006 ◽  
Vol 87 (8) ◽  
pp. 2341-2351 ◽  
Author(s):  
Sarah Costers ◽  
Peter L. Delputte ◽  
Hans J. Nauwynck

Porcine reproductive and respiratory syndrome virus (PRRSV) can evade the host immune system, which results in prolonged virus replication for several weeks to several months. To date, the mechanisms of PRRSV immune evasion have not been investigated in detail. One possible immune-evasion strategy is to avoid incorporation of viral proteins into the plasma membrane of infected cells, as this prevents recognition by virus-specific antibodies and consequent cell lysis either by the classical complement pathway or by antibody-dependent, cell-mediated cytotoxicity. In this study, viral proteins were not observed in the plasma membrane of in vitro-infected macrophages by using confocal microscopy or flow cytometry. Subsequently, the sensitivity of PRRSV-infected macrophages towards antibody-dependent, complement-mediated cell lysis (ADCML) was determined by using an ADCML assay. A non-significant percentage of PRRSV-infected cells were killed in the assay, showing that in vitro PRRSV-infected macrophages are protected against ADCML. PRRSV proteins were not detected in the plasma membrane of in vivo-infected alveolar macrophages and ADCML was also not observed. Together, these data indicate that viral proteins are not incorporated into the plasma membrane of PRRSV-infected macrophages, which makes infected cells invisible to PRRSV-specific antibodies. This absence of viral proteins on the cell surface could explain the protection against ADCML observed for in vitro and in vivo PRRSV-infected macrophages, and may play a role in virus persistence.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Laura C. Miller ◽  
John D. Neill ◽  
Gregory P. Harhay ◽  
Kelly M. Lager ◽  
William W. Laegreid ◽  
...  

Porcine reproductive and respiratory syndrome virus (PRRSV) is a major pathogen of swine worldwide and causes considerable economic loss. Identifying specific cell signaling or activation pathways that associate with variation in PRRSV replication and macrophage function may lead to identification of novel gene targets for the control of PRRSV infection. Serial Analysis of Gene Expression (SAGE) was used to create and survey the transcriptome ofin vitromock-infected and PRRSV strain VR-2332-infected porcine alveolar macrophages (PAM) at 0, 6, 12, 16, and 24 hours after infection. The transcriptome data indicated changes in transcript abundance occurring in PRRSV-infected PAMs over time after infection with more than 590 unique tags with significantly altered transcript abundance levels identified (P<.01). Strikingly, innate immune genes (whose transcript abundances are typically altered in response to other pathogens or insults including IL-8, CCL4, and IL-1β) showed no or very little change at any time point following infection.


2008 ◽  
Vol 89 (10) ◽  
pp. 2550-2564 ◽  
Author(s):  
Sem Genini ◽  
Peter L. Delputte ◽  
Roberto Malinverni ◽  
Maria Cecere ◽  
Alessandra Stella ◽  
...  

Porcine reproductive and respiratory syndrome is a major cause of economic loss for the swine industry worldwide. Porcine reproductive and respiratory syndrome virus (PRRSV) triggers weak and atypical innate immune responses, but key genes and mechanisms by which the virus interferes with the host innate immunity have not yet been elucidated. In this study, genes that control the response of the main target of PRRSV, porcine alveolar macrophages (PAMs), were profiled in vitro with a time-course experiment spanning the first round of virus replication. PAMs were obtained from six piglets and challenged with the Lelystad PRRSV strain, and gene expression was investigated using Affymetrix microarrays and real-time PCR. Of the 1409 differentially expressed transcripts identified by analysis of variance, two, five, 25, 16 and 100 differed from controls by a minimum of 1.5-fold at 1, 3, 6, 9 and 12 h post-infection (p.i.), respectively. A PRRSV infection effect was detectable between 3 and 6 h p.i., and was characterized by a consistent downregulation of gene expression, followed by the start of the host innate immune response at 9 h p.i. The expression of beta interferon 1 (IFN-β), but not of IFN-α, was strongly upregulated, whilst few genes commonly expressed in response to viral infections and/or induced by interferons were found to be differentially expressed. A predominance of anti-apoptotic transcripts (e.g. interleukin-10), a shift towards a T-helper cell type 2 response and a weak upregulation of tumour necrosis factor-α expression were observed within 12 h p.i., reinforcing the hypotheses that PRRSV has developed sophisticated mechanisms to escape the host defence.


2000 ◽  
Vol 71 (1-2) ◽  
pp. 9-25 ◽  
Author(s):  
Ming-T. Chiou ◽  
Chian-R. Jeng ◽  
Ling-L. Chueh ◽  
Chiung-H. Cheng ◽  
Victor F. Pang

2018 ◽  
Vol 2018 ◽  
pp. 1-23 ◽  
Author(s):  
Nanfang Zeng ◽  
Cong Wang ◽  
Siyu Liu ◽  
Qi Miao ◽  
Lei Zhou ◽  
...  

Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important swine pathogens and causes reproductive failure in sows and respiratory disease in growing pigs. PRRSV mainly infects porcine alveolar macrophages (PAMs), leading to the subversion of innate and adaptive immunity of pigs. The transcriptome analysis of gene expression profiles in PRRSV-infected PAMs is essential for understanding the pathogenesis of PRRSV. Here we performed next-generation RNA sequencing and a comprehensive bioinformatics analysis to characterize the dynamic transcriptome landscapes in PAMs following PRRSV infection. Totally 38222 annotated mRNAs, 12987 annotated long noncoding RNAs (lncRNAs), and 17624 novel lncRNAs in PRRSV-infected PAMs were identified through a transcripts computational identification pipeline. The differentially expressed mRNAs and lncRNAs during PRRSV infection were characterized. Several differentially expressed transcripts were validated using qRT-PCR. Analyses on dynamic overrepresented GO terms and KEGG pathways in PRRSV-infected PAMs at different time points were performed. Meanwhile the genes involved in IFN-related signaling pathways, proinflammatory cytokines and chemokines, phagocytosis, and antigen presentation and processing were significantly downregulated, indicating the aberrant function of PAMs during PRRSV infection. Moreover, the differentially and highly expressed lncRNA XR_297549.1 was predicted to both cis-regulate and trans-regulate its neighboring gene, prostaglandin-endoperoxide synthase 2 (PTGS2), indicating its role in inflammatory response. Our findings reveal the transcriptome profiles and differentially expressed mRNAs and lncRNAs in PRRSV-infected PAMsin vitro, providing valuable information for further exploration of PRRSV pathogenesis.


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 594
Author(s):  
Jiexiong Xie ◽  
Nick Vereecke ◽  
Sebastiaan Theuns ◽  
Dayoung Oh ◽  
Nathalie Vanderheijden ◽  
...  

Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) has a highly restricted cellular tropism. In vivo, the virus primarily infects tissue-specific macrophages in the nose, lungs, tonsils, and pharyngeal lymphoid tissues. In vitro however, the MARC-145 cell line is one of the few PRRSV susceptible cell lines that are routinely used for in vitro propagation. Previously, several PRRSV non-permissive cell lines were shown to become susceptible to PRRSV infection upon expression of recombinant entry receptors (e.g., PK15Sn-CD163, PK15S10-CD163). In the present study, we examined the suitability of different cell lines as a possible replacement of primary pulmonary alveolar macrophages (PAM) cells for isolation and growth of PRRSV. The susceptibility of four different cell lines (PK15Sn-CD163, PK15S10-CD163, MARC-145, and MARC-145Sn) for the primary isolation of PRRSV from PCR positive sera (both PRRSV1 and PRRSV2) was compared with that of PAM. To find possible correlations between the cell tropism and the viral genotype, 54 field samples were sequenced, and amino acid residues potentially associated with the cell tropism were identified. Regarding the virus titers obtained with the five different cell types, PAM gave the highest mean virus titers followed by PK15Sn-CD163, PK15S10-CD163, MARC-145Sn, and MARC-145. The titers in PK15Sn-CD163 and PK15S10-CD163 cells were significantly correlated with virus titers in PAM for both PRRSV1 (p < 0.001) and PRRSV2 (p < 0.001) compared with MARC-145Sn (PRRSV1: p = 0.22 and PRRSV2: p = 0.03) and MARC-145 (PRRSV1: p = 0.04 and PRRSV2: p = 0.12). Further, a possible correlation between cell tropism and viral genotype was assessed using PRRSV whole genome sequences in a Genome-Wide-Association Study (GWAS). The structural protein residues GP2:187L and N:28R within PRRSV2 sequences were associated with their growth in MARC-145. The GP5:78I residue for PRRSV2 and the Nsp11:155F residue for PRRSV1 was linked to a higher replication on PAM. In conclusion, PK15Sn-CD163 and PK15S10-CD163 cells are phenotypically closely related to the in vivo target macrophages and are more suitable for virus isolation and titration than MARC-145/MARC-145Sn cells. The residues of PRRSV proteins that are potentially related with cell tropism will be further investigated in the future.


Sign in / Sign up

Export Citation Format

Share Document