scholarly journals miR‑365b‑3p inhibits the cell proliferation and migration of human coronary artery smooth muscle cells by directly targeting ADAMTS1 in coronary atherosclerosis

Author(s):  
Yunfei Qu ◽  
Ning Zhang
2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Mingming Yang ◽  
Tomoko Kamishima ◽  
Caroline Dart ◽  
John M Quayle

Introduction: Intimal thickening of blood vessels, a hallmark of several vascular diseases including atherosclerosis and a potential point of therapeutic intervention, is caused by vascular smooth muscle cell proliferation and migration. It has been suggested that oxygen availability in vessels not only regulates behavior of smooth muscle cells but also serves as a trigger that may lead to pathological responses. In this study we determined whether hypoxia elicits proliferative and migratory responses in Human Coronary Artery SMCs (HCASMCs). Methods: Proliferation of HCASMCs was assessed using a 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. SMCs were plated in 96-well plates (n=5), serum starved, and then placed under hypoxic or normoxic conditions for 2, 4 and 6 days (2D/4D/6D) before MTT was added to each well. Absorbance at the wavelength 570 nm was read on an ELISA plate reader, and percent change in cell viability was determined and normalized to control (cell viability under normoxia). Cell migration was characterized by scratch-wound assay. SMCs were seeded in 6 well plates overnight (n=3), then a ‘scratch’ on the cell monolayer was created for each well before putting into different oxygen levels for 4 hours, 12 hours and 24 hours. Images were captured at the beginning and at intervals during cell migration to close the scratch, and the degree of migration was determined by comparing the images. Results: Compared to normoxic condition, cell number changed to 118.1%±1.3% in 5% O 2 (p<0.05) and 98.2%%±1.9% in 1% O 2 after 2D; to 151.9% ±8.5% in 5% O 2 (p<0.001) and 119.4%±5.0% in 1% O 2 (p<0.05) after 4D; and to 163.0%±4.3% in 5% O 2 (p<0.001) and 120.3%±2.2% in 1% O 2 (p<0.05) after 6D. In the cell migration assay, the difference in migration rate between different groups after 4 hours was not obvious, but there was a significant difference after 12 hours (29.3%±1.3% closure in normoxia vs 39.8%±1.9% in 5% O 2 vs 40.9%±3.5% in 1% O 2 , p<0.05) and 24 hours (71.5%±4.4% in normoxia vs 87.2%±2.2% in 5% O 2 vs 87.5%±3.1% in 1% O 2 , p<0.05). Conclusion: Our studies reveal that hypoxia induces both proliferation and migration of HCASMCs.


Author(s):  
Yaqing Zhou ◽  
Sheng Zhang ◽  
Wenfeng Ji ◽  
Xiongkang Gan ◽  
Lei Hua ◽  
...  

We aimed to investigate differentially expressed long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) in atherosclerosis and validate the expression of lncRNAs and co-expressed target genes in proliferation and migration models of human coronary artery smooth muscle cells (HCASMCs). Ten coronary artery specimens from a subject who died from a heart attack were employed. The pathological analysis was analyzed by hematoxylin and eosin (H&amp;E) staining, and the lncRNAs and mRNAs were identified by RNA sequencing. Bioinformatic analyses were performed to predict possible mechanisms. The proliferation and migration of HCASMCs were induced with oxidized low-density lipoprotein (ox-LDL). Differentially expressed lncRNAs and mRNAs were validated by quantitative real-time polymerase chain reaction (qRT-PCR). In this study, 68 lncRNAs and 222 mRNAs were identified differentially expressed in atherosclerosis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that the Fanconi anemia pathway may be involved in atherosclerosis. GON4L was found to be the co-localized target gene of LNC_000439, and 14 genes had high correlations with the expression of seven lncRNAs. In addition, nine lncRNA–miRNA–mRNA networks were constructed, and 53 co-expressed gene modules were detected with weighted gene co-expression network analysis (WGCNA). LNC_000684, LNC_001046, LNC_001333, LNC_001538, and LNC_002115 were downregulated, while LNC_002936 was upregulated in proliferation and migration models of HCASMCs. In total, six co-expressed mRNAs were upregulated in HCASMCs. This study suggests that the differentially expressed lncRNAs identified by RNA sequencing and validated in smooth muscle cells may be a target for regulating HCASMC proliferation and migration in atherosclerosis, which will provide a new diagnostic basis and therapeutic target for the treatment of cardiovascular diseases.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Gang Yuan ◽  
Guangyan Si ◽  
Qingchun Hou ◽  
Zhaonan Li ◽  
Kaiqiang Xu ◽  
...  

Advanced glycation end products (AGEs) have been widely regarded as an important inducing factor in the pathogenesis of diabetic arteriosclerosis, and the proliferation and migration of vascular smooth muscle cells (VSMCs) are also involved in this process. However, it is not clear whether AGEs promote atherosclerosis by inducing the proliferation and migration of VSMCs. To figure out this question, this study investigated the effects of AGEs on the proliferation and migration of human aorta vascular smooth muscle cells (HASMCs) and the underlying mechanisms. This study evaluated the effects of different concentrations of AGEs on cell proliferation and migration. CCK8, transwell, and western blotting assays demonstrated that AGEs significantly increased cell proliferation and migration in a concentration-dependent manner and that the optimal proproliferative and promigratory concentrations of AGEs were 10 mg/L and 20 mg/L, respectively. AGE-induced cell proliferation, migration, and expression of filament actin (F-actin) were markedly attenuated by a PI3K inhibitor (LY2940002). Additionally, the phosphorylation of AKT was reduced when the receptor of advanced glycation end product (RAGE) gene was silenced by lentivirus transfection, which led to a concomitant reduction of the expression of proliferation and migration-related proteins. These data indicate that AGEs may activate the PI3K/AKT pathway through RAGE and thus facilitate the proliferation and migration of HASMCs.


Sign in / Sign up

Export Citation Format

Share Document