cxcr4 receptor
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 25)

H-INDEX

31
(FIVE YEARS 4)

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2063-2063
Author(s):  
Katarina Zmajkovicova ◽  
Sabine Maier-Munsa ◽  
Barbara Maierhofer ◽  
Arthur G. Taveras ◽  
Adriana Badarau

Abstract Background: WHIM (Wart, Hypogammaglobulinemia, Infections, Myelokathexis) syndrome is a rare, autosomal-dominant primary immunodeficiency with neutropenia and lymphopenia. The clinical presentation may include recurrent infections, and increased susceptibility to human papillomavirus. In >80% of cases, WHIM syndrome is caused by heterozygous gain-of-function (GOF) mutations in C-X-C chemokine receptor 4 (CXCR4), with >12 variants reported in WHIM syndrome to date (nonsense [NS], frameshift [FS], and missense[MS]) spanning 27 C-terminal amino acids . These mutations cause hyperactivation of downstream signaling and retention of WBC in the bone marrow (McDermott D, et al. Immunol Rev. 2019;287(1):91-102; Beaussant S, et al. Orphanet J Rare Dis. 2012;7(71):1-14). To date, a comprehensive study characterizing the functional abnormalities caused by pathogenic CXCR4 mutations and correlating these measures with clinical presentation in patients has not been conducted. Here, we aimed to establish genotype-phenotype correlations for all known pathogenic variants using in vitro functional assays. These assays characterize CXCR4 receptor trafficking and downstream signaling, which will enable the long-term goal of assessing pathogenicity of novel CXCR4 variants of uncertain significance (VUS). We further aimed to assess the in vitro response of each variant to mavorixafor, an investigational CXCR4 antagonist. Methods: We used the CXCR4-negative K562 cell line as a model system to express all 14 known CXCR4 variants identified in patients diagnosed with WHIM syndrome (previous reports, ClinVar, and genetic screening initiatives [Invitae PATH4WARD]). The effects of the mutations on CXCR4 receptor trafficking (internalization and degradation), downstream signaling (Ca 2+ mobilization, cAMP inhibition, ERK and AKT activation), and chemotaxis were studied in parallel in a series of assays in cells stimulated with the natural ligand CXCL12. All in vitro functional parameters characterized were investigated for potential correlations with the clinical phenotypes reported for each variant, including disease manifestations and biomarkers. Results: The most conserved feature of the 14 CXCR4 variants was an impaired receptor internalization in response to CXCL12, evidenced by higher percentage of CXCR4 receptors remaining on the cell surface compared to untreated control, with truncated variants showing maximum impairment and the MS variant E343K being least affected. The decreased CXCR4 internalization correlated with both decreased CXCR4 degradation and increased cAMP inhibition. When stimulated with CXCL12, most variants demonstrated a higher amplitude and duration of ERK and AKT activation. Chemotactic responses to CXCL12 were diverse, depending on the variant sequence and subtype. While Ca 2+ mobilization was not enhanced compared to wild-type (WT) CXCR4-expressing cells in this assay, mavorixafor demonstrated inhibition of Ca 2+ mobilization in all CXCR4 mutant cells with a trend toward greater effect in the NS variants. In addition, both ERK and AKT activation decreased with increasing concentration of mavorixafor. Correlation analyses of the functional parameters in cells expressing mutated or WT CXCR4 and clinical manifestations or WBC counts in patients with these mutations revealed that the CXCR4 internalization defect strongly correlated with severity of peripheral blood cytopenias (ie, decreases in absolute neutrophil counts, and in CD3+ and CD4+ T-cell levels), which was paralleled by an increased susceptibility to recurrent infections. In addition, AKT hyperactivation correlated with lower IgA and decreased CD4+ T-cell levels (Figure). Conclusions: In the current study, we performed a detailed functional analysis of the entire spectrum of CXCR4 WHIM mutations known to date. In vitro CXCR4 receptor internalization correlates with WBC cytopenias and an increased susceptibility to recurrent infections in patients with CXCR4 GOF mutations. These data suggest that CXCR4 internalization and AKT activation may be used as key assays for the assessment of CXCR4 variant pathogenicity in vitro and potentially as WHIM-related disease biomarkers. Additionally, all tested CXCR4 variant cell lines were sensitive to mavorixafor at clinically relevant concentrations, rescuing defective GOF signaling toward that of WT CXCR4-expressing cells. Figure 1 Figure 1. Disclosures Zmajkovicova: X4 Pharmaceuticals: Current Employment, Current equity holder in publicly-traded company. Maier-Munsa: X4 Pharmaceuticals: Current Employment. Maierhofer: X4 Pharmaceuticals: Current Employment. Taveras: X4 Pharmaceuticals: Current Employment, Current equity holder in publicly-traded company. Badarau: X4 Pharmaceuticals: Current equity holder in publicly-traded company, Ended employment in the past 24 months.


2021 ◽  
Author(s):  
K Tiwary ◽  
M Harms ◽  
K Walter ◽  
R Schmid ◽  
B Beitzinger ◽  
...  
Keyword(s):  

2021 ◽  
Vol 118 (13) ◽  
pp. e2015433118
Author(s):  
Jen-Shin Song ◽  
Chih-Chun Chang ◽  
Chien-Huang Wu ◽  
Trinh Kieu Dinh ◽  
Jiing-Jyh Jan ◽  
...  

The CXC chemokine receptor type 4 (CXCR4) receptor and its ligand, CXCL12, are overexpressed in various cancers and mediate tumor progression and hypoxia-mediated resistance to cancer therapy. While CXCR4 antagonists have potential anticancer effects when combined with conventional anticancer drugs, their poor potency against CXCL12/CXCR4 downstream signaling pathways and systemic toxicity had precluded clinical application. Herein, BPRCX807, known as a safe, selective, and potent CXCR4 antagonist, has been designed and experimentally realized. In in vitro and in vivo hepatocellular carcinoma mouse models it can significantly suppress primary tumor growth, prevent distant metastasis/cell migration, reduce angiogenesis, and normalize the immunosuppressive tumor microenvironment by reducing tumor-associated macrophages (TAMs) infiltration, reprogramming TAMs toward an immunostimulatory phenotype and promoting cytotoxic T cell infiltration into tumor. Although BPRCX807 treatment alone prolongs overall survival as effectively as both marketed sorafenib and anti–PD-1, it could synergize with either of them in combination therapy to further extend life expectancy and suppress distant metastasis more significantly.


2021 ◽  
Vol 17 (2) ◽  
pp. 263-278
Author(s):  
Maydelid Trujillo-Nolasco ◽  
Pedro Cruz-Nova ◽  
Guillermina Ferro-Flores ◽  
Brenda Gibbens-Bandala ◽  
Enrique Morales-Avila ◽  
...  

Pancreatic cancer is highly lethal and has a poor prognosis. The most common alteration during the formation of pancreatic tumors is the activation of KRAS (Kirsten rat sarcoma 2 viral oncogene homolog) oncogene. As a new therapeutic strategy, the C19 molecule ((2S)-N-(2,5-dichlorophenyl)-2-[(3,4-dimethoxyphenyl)-methylamine]propanamide) blocks the KRAS-membrane association in cancer cells. In addition, the chemokine receptor CXCR4 is overexpressed in pancreatic cancer. In this research, a new dendrimer-based nanoradiopharmaceutical (177Lu-DN(C19)-CXCR4L) encapsulating C19 and functionalized to target CXCR4 receptors is proposed as both, a targeted radiotherapy system (lutetium-177) and an oncotherapeutic approach by the stabilization of KRAS4b-PDESδ complex to produce dual-specific therapy in pancreatic cancer. 177The Lu-DN(C19)-CXCR4L was synthesized and characterized, C19 was encapsulated with 81% efficiency, the final nanosystem rendered a particle size of 67 nm and the specific uptake in pancreatic cell lines was demonstrated. The major cytotoxic effect was observed in the KRAS-dependent and radioresistant cell line Mia PaCa-2, which expresses a high density of CXCR4 receptors. The radiation dose of 3 Gy/Bq decreased viability to 7%, and this effect was attributed to the presence of C19. A synergistic effect (radio and chemotherapy) capable of reducing viability in pancreatic cancer cells through apoptotic mechanisms was demonstrated. Thus, 177Lu-DN(C19)-CXCR4L nanoradiopharmaceutical is efficacious in pancreatic cancer cell lines overexpressing the CXCR4 receptor.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 153
Author(s):  
Cristina A. Martinez ◽  
Manuel Alvarez-Rodriguez ◽  
Maite Casado-Bedmar ◽  
Heriberto Rodriguez-Martinez

Successful internal fertilization in mammals depends on several mechanisms, including those triggering the so-called “sperm attraction” towards the oocyte, which include some oocyte-derived sperm chemoattractants and interactive protein complexes, such as the cytokine C-X-C motif chemokine 12/C-X-C chemokine receptor type 4 (CXCL12-CXCR4) receptor complex. The presence and precise localization of these crucial proteins was determined hereby, for the first time, in porcine cumulus–oocyte complexes (COCs) and spermatozoa. CXCL12 was overexpressed in the cumulus cells of in vitro matured, compared to immature COCs (p < 0.05), with its receptor (CXCR4) being up-regulated in capacitated spermatozoa (p < 0.03) compared to uncapacitated spermatozoa. The CXCR4 appeared specifically localized in the sperm tail of non-capacitated spermatozoa and also in the sperm head of capacitated spermatozoa, suggesting that the CXCL12-CXCR4 signaling complex would play a pivotal role in attracting capacitated spermatozoa towards the oocyte, facilitating fertilization in pigs.


Author(s):  
Yitian Wu ◽  
Hong Zhu ◽  
Xiaojun Zhang ◽  
Peng Yu ◽  
Yuan Gui ◽  
...  

2021 ◽  
Vol 50 (5) ◽  
pp. 1599-1603
Author(s):  
Neazar E. Baghdadi ◽  
Benjamin P. Burke ◽  
Tahani Alresheedi ◽  
Shubhanchi Nigam ◽  
Abdu Saeed ◽  
...  

Superparamagnetic iron oxide nanoparticles have been coated with a low affinity CXCR4 receptor antagonist to give a high affinity multivalent CXCR4 binding construct.


Author(s):  
Oldřich Farsa ◽  
Peter Zubáč

Abstract:: Pluripotent stem cells of the bone marrow are stimulated by different cytokines to proliferation and differentiation into various types of blood cells. These cytokines are mostly glycoproteins. Erythropoietin stimulates stem cells to the formation of erythrocytes while colony-stimulating factors cause the formation of different types of white blood cells. Stem cell factors play an important role in the maintenance and survival of blood cells of all types. Thrombopoietin stimulates stem cells to proliferation and formation of blood platelets. Granulocyte colony-stimulating factor is probably the most important used as a drug. It stimulates stem cells to the formation of neutrophile granulocytes. It is often used in recombinant forms such as filgrastim in the treatment of neutropenia in cancer chemotherapy or AIDS. Its pegylated conjugates such as pegfilgrastim are also available. Its activity can be supported by plerixafor, a small molecule – bicyclam derivative acting as an indirect agonist of stem cells factor. It acts as an antagonist of CXCR4 receptor activation of which brakes hematopoiesis. The treatment of conditions accompanied by thrombocytopenia such as idiopathic thrombocytopenic purpura is currently not performed by thrombopoietin but synthetic agonists of its receptor are preferred. Romiplostim is a peptibody. It consists of a protein part interacting with the thrombopoietin receptor which is, however, different from thrombopoietin, and of Fc fragment of immunoglobulin G1. In contrast, small molecule thrombopoietin receptor agonists represented by eltrombopag can be given orally unlike all of the above.


Sign in / Sign up

Export Citation Format

Share Document