scholarly journals Minichromosome maintenance protein 7 in colorectal cancer: Implication of prognostic significance

Author(s):  
Kohei Shomori
2010 ◽  
Vol 1 (4) ◽  
pp. 703-709 ◽  
Author(s):  
YUKI HAMAMOTO ◽  
KOHEI SHOMORI ◽  
KANAE NOSAKA ◽  
TOMOHIRO HARUKI ◽  
RYOTA TESHIMA ◽  
...  

2020 ◽  
Vol 40 (7) ◽  
Author(s):  
He Zhou ◽  
Yongfu Xiong ◽  
Guangjun Zhang ◽  
Zuoliang Liu ◽  
Lifa Li ◽  
...  

Abstract Background: The minichromosome maintenance (MCM) family, a core component of DNA replication, is involved in cell cycle process. Abnormal proliferation has been identified as a crucial process in the evolution of colorectal cancer (CRC). However, the roles of the MCM family in CRC remain largely unknown. Methods: Here, the expression, prognostic significance and functions of the MCM family in CRC were systematically analyzed through a series of online databases including CCLE, Oncomine, HPA, cBioPortal and cancerSEA. Results: We found all MCM family members were highly expressed in CRC, but only elevation of MCM3 expression was associated with poor prognosis of patients with CRC. Further in vitro and in vivo experiments were performed to examine the role of MCM3 in CRC. Analysis of CCLE database and qRT-PCR assay confirmed that MCM3 was overexpressed in CRC cell lines. Moreover, knockdown of MCM3 significantly suppressed transition of G1 to S phase in CRC cells. Furthermore, down-regulation of MCM3 inhibited CRC cell proliferation, migration, invasion and promoted apoptosis. Conclusion: These findings reveal that MCM3 may function as an oncogene and a potential prognosis biomarker. Thus, the association between abnormal expression of MCM3 and the initiation of CRC deserves further exploration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Zhang ◽  
Zhaohui Zhong ◽  
Mei Li ◽  
Jingyi Chen ◽  
Tingru Lin ◽  
...  

AbstractAbnormally expressed and/or phosphorylated Abelson interactor 1 (ABI1) participates in the metastasis and progression of colorectal cancer (CRC). ABI1 presents as at least 12 transcript variants (TSVs) by mRNA alternative splicing, but it is unknown which of them is involved in CRC metastasis and prognosis. Here, we firstly identified ABI1-TSV-11 as a key TSV affecting the metastasis and prognosis of left-sided colorectal cancer (LsCC) and its elevated expression is related to lymph node metastasis and shorter overall survival (OS) in LsCC by analyzing data from The Cancer Genome Atlas and TSVdb. Secondly, ABI1-TSV-11 overexpression promoted LoVo and SW480 cells adhesion and migration in vitro, and accelerated LoVo and SW480 cells lung metastasis in vivo. Finally, mechanism investigations revealed that ABI1-isoform-11 interacted with epidermal growth factor receptor pathway substrate 8 (ESP8) and regulated actin dynamics to affect LoVo and SW480 cells biological behaviors. Taken together, our data demonstrated that ABI1-TSV-11 plays an oncogenic role in LsCC, it is an independent risk factor of prognosis and may be a potential molecular marker and therapeutic target in LsCC.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ryan M. Baxley ◽  
Wendy Leung ◽  
Megan M. Schmit ◽  
Jacob Peter Matson ◽  
Lulu Yin ◽  
...  

AbstractMinichromosome maintenance protein 10 (MCM10) is essential for eukaryotic DNA replication. Here, we describe compound heterozygous MCM10 variants in patients with distinctive, but overlapping, clinical phenotypes: natural killer (NK) cell deficiency (NKD) and restrictive cardiomyopathy (RCM) with hypoplasia of the spleen and thymus. To understand the mechanism of MCM10-associated disease, we modeled these variants in human cell lines. MCM10 deficiency causes chronic replication stress that reduces cell viability due to increased genomic instability and telomere erosion. Our data suggest that loss of MCM10 function constrains telomerase activity by accumulating abnormal replication fork structures enriched with single-stranded DNA. Terminally-arrested replication forks in MCM10-deficient cells require endonucleolytic processing by MUS81, as MCM10:MUS81 double mutants display decreased viability and accelerated telomere shortening. We propose that these bi-allelic variants in MCM10 predispose specific cardiac and immune cell lineages to prematurely arrest during differentiation, causing the clinical phenotypes observed in both NKD and RCM patients.


Sign in / Sign up

Export Citation Format

Share Document