scholarly journals Identification of critical genes in nucleus pulposus cells isolated from degenerated intervertebral discs using bioinformatics analysis

2017 ◽  
Vol 16 (1) ◽  
pp. 553-564 ◽  
Author(s):  
Zhuangchen Zhu ◽  
Guang Chen ◽  
Wei Jiao ◽  
Defeng Wang ◽  
Yan Cao ◽  
...  
Medicine ◽  
2018 ◽  
Vol 97 (44) ◽  
pp. e12977 ◽  
Author(s):  
Xu Feng ◽  
Li Liu ◽  
Bao-Qing Yu ◽  
Jian-Ming Huang ◽  
Long-Dian Gu ◽  
...  

2015 ◽  
Vol 12 (3) ◽  
pp. 4664-4668 ◽  
Author(s):  
KERAN SONG ◽  
TAO GU ◽  
FENG SHUANG ◽  
JIAGUANG TANG ◽  
DONGFENG REN ◽  
...  

2020 ◽  
Author(s):  
kun zhu ◽  
Rui Zhao ◽  
Yuchen Ye ◽  
Gang Xu ◽  
Changchun Zhang

Abstract Background: Disc degenerative disease is a common senile degenerative disease, which seriously affects the quality of life of patients.The purpose of this study is to observe the biological and cytological characteristics of rabbit nucleus pulposus mesenchymal stem cells (NPMSCs), and to determine the effect of growth differentiation factor 5(GDF5) on the differentiation of rabbit NPMSCs by lentivirus transfection.Methods: In vitro culture model of rabbit NPMSCs was established and NPMSCs cells were identified by flow cytometry (FCM)and quantitative real-time PCR(qRT-PCR). Then NPMSCs were divided into three groups: lentiviral vector carrying GDF5 was used to transfect NPMSCs, to determine the transfection rate, which was recorded as transfection group, and the NPMSCs transfected with ordinary lentiviral vector was recorded as control group, NPMSCs without processing was recorded as normal group. FCM, qRT-PCR and Western Blot(WB) were used to detected the change of NPMSCs.Results: The transfected NPMSCs by GDF5 became longer and narrower, and the cell density decreased,and the positive rate of GDF5 in the transfected group was significantly higher than that in the other two groups (P<0.05). The mRNA expression of KRT8, KRT18, KRT19 in the transfected group was significantly higher than the other two groups(P<0.05),the result of WB were the same to qRT-PCR. Conclusions: GDF5 can induce the differentiation of NPMSCs and repair degenerative intervertebral discs. Lentiviral vector carrying GDF5 can be integrated into the chromosome genome of NPMSCs and promote differentiation of NPMSCs into nucleus pulposus cells(NPCs).


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Guoqing Tang ◽  
Xiaoguang Han ◽  
Zhijie Lin ◽  
Hongbin Qian ◽  
Bing Chen ◽  
...  

Our previous study verified the occurrence of Propionibacterium acnes (P. acnes), a low-virulence anaerobic bacterium, latently residing in degenerated intervertebral discs (IVDs), and the infection had a strong association with IVD degeneration. We explored whether P. acnes induces nucleus pulposus cell (NPC) pyroptosis, a more dangerous cell death process than apoptosis, and accelerates IVD degeneration via the pyroptotic products interleukin- (IL-) 1β and IL-18. After coculturing with P. acnes, human NPCs showed significant upregulation of NOD-like receptor 3 (NLRP3), cleaved IL-1β, cleaved caspase-1, and cleaved gasdermin D in response to the overexpression of IL-1β and IL-18 in a time- and dose-dependent manner. In addition, the gene expression of inflammatory factors and catabolic enzymes significantly increased in normal NPCs when cocultured with pyroptotic NPCs in a transwell system, and the adverse effects were inhibited when NPC pyroptosis was suppressed. Furthermore, inoculation of P. acnes into the IVDs of rats caused significant pyroptosis of NPCs and remarkable IVD degeneration. Finally, coculture of NPCs with P. acnes induced the overexpression of reactive oxygen species (ROS) and NLRP3, while inhibition of both factors reduced NPC pyroptosis. Therefore, P. acnes induces NPC pyroptosis via the ROS-NLRP3 signaling pathway, and the pyroptotic NPCs cause an IVD degeneration cascade. Targeting the P. acnes-induced pyroptosis of NPCs may become an alternative treatment strategy for IVD degeneration in the future.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Zhaohui Zhai ◽  
Zhaoxin Li ◽  
Zhonglei Ji ◽  
Xiaosheng Lu

Objective. Polygonatum sibiricum polysaccharide (PSP) has antioxidant activity, immune enhancement, and other biological properties. However, the effect of PSP on intervertebral disc degeneration has not been reported. In this study, we mainly investigated the effect of PSP on the apoptosis, inflammation, and oxidative stress of nucleus pulposus cells (NPCs) during the process of intervertebral disc degeneration. Methods. A rat NPC model induced by H2O2 was constructed. The CCK8 method was used to measure the effects of PSP on the apoptosis of rat NPCs induced by H2O2. The effects on the activity of SOD and content of MDA were also determined. The rat model of intervertebral disc degeneration was treated with PSP for 1 month, and the mRNA expression levels of IL-1β, COX2, iNOS, Col2α1, Col10α1, and MMP3 were measured by qPCR in the tissue of intervertebral disc. NPCs from the degenerated intervertebral discs were separated, and the cell viability was measured by the CCK8 method. The contents of SOD and MDA in NPCs were determined as well. Results. PSP significantly reduced the apoptosis of NPCs induced by H2O2, significantly increased the SOD content, and decreased the content of MDA in H2O2-induced NPCs. The expression level of IL-1β, COX2, and iNOS in the rat model with intervertebral disc degeneration was significantly downregulated after 1 month of PSP treatment. PSP treatment increased the expression of Col2α1 type and significantly decreased the expression of Col10α1 type collagen and MMP3 in rats with disc degeneration. PSP treatment significantly reduced NPC apoptosis and increased its SOD content and reduced MDA content, which is consistent with the results from cell-level experiments. Conclusion. PSP can effectively reduce the apoptosis, inflammation, and oxidative stress of H2O2-induced NPCs in rats with intervertebral disc degeneration and mitigate the progression of intervertebral disc degeneration, which has the potential to be developed as new drugs for the treatment of intervertebral disc degeneration.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Kaishun Xia ◽  
Jian Zhu ◽  
Jianming Hua ◽  
Zhe Gong ◽  
Chao Yu ◽  
...  

Background. Cell replacement therapy is an attractive alternative for treating degenerated intervertebral discs (IVDs), which are related to the reduction of nucleus pulposus-like cells (NP-lCs) and the loss of the extracellular matrix. Induced pluripotent stem cells (iPSCs) which resemble embryonic stem cells are considered to be a potential resource for restoring NP-lCs and disc homeostasis. Here, we proposed an efficient two-step differentiation protocol of human iPSCs into NP-lCs and continuously tested their in vivo ability to regenerate IVDs. Methods. A polymeric gelatin microsphere (GM) was generated for sustained release of growth and differentiation factor-5 (GDF-5) and as a cell delivery vehicle of NP-lCs. By injecting NP-lC-seeded GDF-5-loaded GMs into the rat coccygeal intervertebral discs, the disc height and water content were examined with the molybdenum target radiographic imaging test and magnetic resonance imaging examination. Histology and immunohistochemistry results were shown with H&E, S-O-Fast Green, and immunohistochemistry staining. Results. We demonstrated that the injection of NP-lC-seeded GDF-5-loaded GMs could reverse IDD in a rat model. The imaging examination indicated that disc height recovered and water content increased. Histology and immunohistochemistry results indicated that the NP cells as well as their extracellular matrix were partially restored. Conclusions. The results suggest that NP-lC-seeded GDF-5-loaded GMs could partially regenerate degenerated intervertebral discs after transplantation into rat coccygeal intervertebral discs. Our study will help develop a promising method of stem cell-based therapy for IDD.


Aging Cell ◽  
2020 ◽  
Vol 19 (11) ◽  
Author(s):  
Tiffany Y. K. Au ◽  
To‐Kam Lam ◽  
Yan Peng ◽  
Sarah L. Wynn ◽  
Kenneth M. C. Cheung ◽  
...  

2020 ◽  
Vol 9 (5) ◽  
pp. 225-235
Author(s):  
Xin Peng ◽  
Cong Zhang ◽  
Jun-Ping Bao ◽  
Lei Zhu ◽  
Rui Shi ◽  
...  

Aims Inflammatory response plays a pivotal role in the pathophysiological process of intervertebral disc degeneration (IDD). A20 (also known as tumour necrosis factor alpha-induced protein 3 (TNFAIP3)) is a ubiquitin-editing enzyme that restricts nuclear factor-kappa B (NF-κB) signalling. A20 prevents the occurrence of multiple inflammatory diseases. However, the role of A20 in the initiation of IDD has not been elucidated. The aim of the study was to investigate the effect of A20 in senescence of TNF alpha (TNF-α)-induced nucleus pulposus cells (NPCs). Methods Immunohistochemical staining was performed to observe the expression of A20 in normal and degenerated human intervertebral discs. The NPCs were dissected from the tail vertebrae of healthy male Sprague-Dawley rats and were cultured in the incubator. In the experiment, TNF-α was used to mimic the inflammatory environment of IDD. The cell viability and senescence were examined to investigate the effect of A20 on TNF-α-treated NPCs. The expression of messenger RNA (mRNA)-encoding proteins related to matrix macromolecules (collagen II, aggrecan) and senescence markers (p53, p16). Additionally, NF-κB/p65 activity of NPCs was detected within different test compounds. Results The expression of A20 was upregulated in degenerate human intervertebral discs. The A20 levels of NPCs in TNF-α inflammatory microenvironments were dramatically higher than those of the control group. TNF-α significantly decreased cell proliferation potency but increased senescence-associated beta-galactosidase (SA-β-Gal) activity, the expression of senescence-associated proteins, the synthesis of extracellular matrix, and G1 cycle arrest. The senescence indicators and NF-κB/p65 expression of A20 downregulated group treated with TNF-α were significantly upregulated compared to TNF-α-treated normal NPCs. Conclusion A20 has a self-protective effect on the senescence of NPCs induced by TNF-α. The downregulation of A20 in NPCs exacerbated the senescence of NPCs induced by TNF-α. Cite this article: Bone Joint Res. 2020;9(5):225–235.


Sign in / Sign up

Export Citation Format

Share Document