scholarly journals [Retracted] Knockdown of ADAM10 inhibits migration and invasion of fibroblast-like synoviocytes in rheumatoid arthritis

2022 ◽  
Vol 25 (2) ◽  
Author(s):  
Dan Li ◽  
Zhitao Xiao ◽  
Gang Wang ◽  
Xianji Song
2020 ◽  
Author(s):  
Ha-Reum Lee ◽  
Su-Jin Yoo ◽  
Jinhyun Kim ◽  
In Seol Yoo ◽  
Chan Keol Park ◽  
...  

Abstract Background: Reactive oxygen species (ROS) regulate the migration and invasion of fibroblast-like synoviocytes (FLS), which are key effector cells in rheumatoid arthritis (RA) pathogenesis. Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) induces ROS generation and consequently, enhances cell migration. Despite the important interrelationship between RA, FLS, and ROS, the effect of NOX4 on RA pathogenesis remains unclear. Methods: FLS isolated from RA (n=5) and osteoarthritis (OA, n=5) patients were stimulated with recombinant interleukin 17 (IL-17; 10 ng/ml) and tumor necrosis factor alpha (TNF-α; 10 ng/ml) for 1 h. Cell migration, invasion, adhesion molecule expression, vascular endothelial growth factor (VEGF) secretion, and ROS expression were examined. The mRNA and protein levels of NOX4 were analyzed by RT-qPCR and western blotting, respectively. The NOX4 inhibitor GLX351322 and NOX4 siRNA were used to inhibit NOX4 to probe the effect of NOX4 on these cellular processes. Results: Migration of RA FLS was increased 2.48-fold after stimulation with IL-17 and TNF-α, while no difference was observed for OA FLS. ROS expression increased in parallel with invasiveness of FLS following cytokine stimulation. When the expression of NOX was examined, NOX4 was significantly increased by 9.73-fold in RA FLS compared to unstimulated FLS. Following NOX4 inhibition, cytokine-induced vascular cell adhesion molecule 1 (VCAM1), VEGF, and migration and invasion capacity of RA FLS were markedly decreased to unstimulated levels. Conclusion: NOX4 is a key contributor to cytokine-enhanced migration and invasion via modulation of ROS, VCAM1, and VEGF in RA FLS.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yujie Cai ◽  
Renge Liang ◽  
Shibai Xiao ◽  
Qin Huang ◽  
Dingji Zhu ◽  
...  

Dysregulation of circular RNAs (circRNAs) is involved in various human diseases. Fibroblast-like synoviocytes (FLSs), which form the lining of the joint, are epigenetically imprinted with an aggressive phenotype and contribute to joint destruction in rheumatoid arthritis (RA). In the present study, we identified a novel circRNA, Circ_0088194, which was upregulated in RA fibroblast-like synoviocytes (RA-FLSs) and correlated with the disease activity score in 28 joints. Overexpression of Circ_0088194 promoted RA-FLS migration and invasion, while inhibition of Circ_0088194 had the opposite effect. Mechanistically, Circ_0088194 acted as a miR-766-3p sponge to relieve the repressive effect of miR-766-3p on its target, MMP2 (encoding matrix metalloproteinase 2), thereby promoting migration and invasion. The expression level of Circ_0088194 was inversely correlated with that of miR-766-3p in RA-FLSs. Importantly, overexpression of miR-766-3p partially blocked the migration and invasion induced by Circ_0088194 overexpression. Collectively, this study identified a novel circRNA Circ_0088194 that promotes RA-FLS invasion and migration via the miR-766-3p/MMP2 axis. Circ_0088194 might represent a novel therapeutic target to prevent and treat RA.


Sign in / Sign up

Export Citation Format

Share Document