Transforming growth factor β1 promotes fibroblast-like synoviocytes migration and invasion via TGF-β1/Smad signaling in rheumatoid arthritis

2019 ◽  
Vol 459 (1-2) ◽  
pp. 141-150 ◽  
Author(s):  
DingJi Zhu ◽  
JinJun Zhao ◽  
AiJu Lou ◽  
Qin Huang ◽  
QingQing OuYang ◽  
...  
2021 ◽  
Vol 52 (8) ◽  
pp. 653-665
Author(s):  
Aglaia Chalkia ◽  
Harikleia Gakiopoulou ◽  
Irini Theohari ◽  
Periklis G. Foukas ◽  
Dimitrios Vassilopoulos ◽  
...  

<b><i>Introduction:</i></b> Transforming growth factor-β1 (TGF-β1) is a multifunctional cytokine, with diverse roles in fibrosis and inflammation, which acts through Smad signaling in renal pathology. We intended to investigate the expression of TGF-β/Smad signaling in glomerulonephritis (GN) and to assess its role as risk factor for progression to chronic kidney disease (CKD). <b><i>Methods:</i></b> We evaluated the immunohistochemical expression of TGF-β1, phosphorylated Smad3 (pSmad3), and Smad7 semiquantitatively and quantitatively using computerized image analysis program in different compartments of 50 renal biopsies with GN, and the results were statistically analyzed with clinicopathological parameters. We also examined the associations among their expressions, the impact of their co-expression, and their role in progression to CKD. <b><i>Results:</i></b> TGF-β1 expression correlated positively with segmental glomerulosclerosis (<i>p</i><b></b>= 0.025) and creatinine level at diagnosis (<i>p</i> = 0.002), while pSmad3 expression with interstitial inflammation (<i>p</i> = 0.024). In glomerulus, concomitant expressions of high Smad7 and medium pSmad3 were observed to be correlated with renal inflammation, such as cellular crescent (<i>p</i> = 0.011), intense interstitial inflammation (<i>p</i> = 0.029), and lower serum complement (C) 3 (<i>p</i> = 0.028) and C4 (<i>p</i> = 0.029). We also reported a significant association between pSmad3 expression in glomerular endothelial cells of proliferative GN (<i>p</i> = 0.045) and in podocytes of nonproliferative GN (<i>p</i> = 0.005). Finally, on multivariate Cox-regression analysis, TGF-β1 expression (hazard ratio = 6.078; 95% confidence interval: 1.168–31.627; <i>p</i> = 0.032) was emerged as independent predictor for CKD. <b><i>Discussion/Conclusion:</i></b> TGF-β1/Smad signaling is upregulated with specific characteristics in different forms of GN. TGF-β1 expression is indicated as independent risk factor for progression to CKD, while specific co-expression pattern of pSmad3 and Smad7 in glomerulus is correlated with renal inflammation.


2021 ◽  
Vol 22 (6) ◽  
pp. 2952
Author(s):  
Tzu-Yu Hou ◽  
Shi-Bei Wu ◽  
Hui-Chuan Kau ◽  
Chieh-Chih Tsai

Transforming growth factor-β1 (TGF-β1)-induced myofibroblast transdifferentiation from orbital fibroblasts is known to dominate tissue remodeling and fibrosis in Graves’ ophthalmopathy (GO). However, the signaling pathways through which TGF-β1 activates Graves’ orbital fibroblasts remain unclear. This study investigated the role of the mitogen-activated protein kinase (MAPK) pathway in TGF-β1-induced myofibroblast transdifferentiation in human Graves’ orbital fibroblasts. The MAPK pathway was assessed by measuring the phosphorylation of p38, c-Jun N-terminal kinase (JNK), and extracellular-signal-regulated kinase (ERK) by Western blots. The expression of connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), and fibronectin representing fibrogenesis was estimated. The activities of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) responsible for extracellular matrix (ECM) metabolism were analyzed. Specific pharmacologic kinase inhibitors were used to confirm the involvement of the MAPK pathway. After treatment with TGF-β1, the phosphorylation levels of p38 and JNK, but not ERK, were increased. CTGF, α-SMA, and fibronectin, as well as TIMP-1 and TIMP-3, were upregulated, whereas the activities of MMP-2/-9 were inhibited. The effects of TGF-β1 on the expression of these factors were eliminated by p38 and JNK inhibitors. The results suggested that TGF-β1 could induce myofibroblast transdifferentiation in human Graves’ orbital fibroblasts through the p38 and JNK pathways.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yueyi Yang ◽  
Wenjing Liu ◽  
JieYa Wei ◽  
Yujia Cui ◽  
Demao Zhang ◽  
...  

AbstractGap junction (GJ) has been indicated to have an intimate correlation with adhesion junction. However, the direct interaction between them partially remains elusive. In the current study, we aimed to elucidate the role of N-cadherin, one of the core components in adhesion junction, in mediating connexin 43, one of the functional constituents in gap junction, via transforming growth factor-β1(TGF-β1) induction in osteoblasts. We first elucidated the expressions of N-cadherin induced by TGF-β1 and also confirmed the upregulation of Cx43, and the enhancement of functional gap junctional intercellular communication (GJIC) triggered by TGF-β1 in both primary osteoblasts and MC3T3 cell line. Colocalization analysis and Co-IP experimentation showed that N-cadherin interacts with Cx43 at the site of cell–cell contact. Knockdown of N-cadherin by siRNA interference decreased the Cx43 expression and abolished the promoting effect of TGF-β1 on Cx43. Functional GJICs in living primary osteoblasts and MC3T3 cell line were also reduced. TGF-β1-induced increase in N-cadherin and Cx43 was via Smad3 activation, whereas knockdown of Smad3 signaling by using siRNA decreased the expressions of both N-cadherin and Cx43. Overall, these data indicate the direct interactions between N-cadherin and Cx43, and reveal the intervention of adhesion junction in functional gap junction in living osteoblasts.


2001 ◽  
Vol 21 (21) ◽  
pp. 7218-7230 ◽  
Author(s):  
Francesc Viñals ◽  
Jacques Pouysségur

ABSTRACT Mouse capillary endothelial cells (1G11 cell line) embedded in type I collagen gels undergo in vitro angiogenesis. Cells rapidly reorganize and form capillary-like structures when stimulated with serum. Transforming growth factor β1 (TGF-β1) alone can substitute for serum and induce cell survival and tubular network formation. This TGF-β1-mediated angiogenic activity depends on phosphatidylinositol 3-kinase (PI3K) and p42/p44 mitogen-activated protein kinase (MAPK) signaling. We showed that specific inhibitors of either pathway (wortmannin, LY-294002, and PD-98059) all suppressed TGF-β1-induced angiogenesis mainly by compromising cell survival. We established that TGF-β1 stimulated the expression of TGF-α mRNA and protein, the tyrosine phosphorylation of a 170-kDa membrane protein representing the epidermal growth factor (EGF) receptor, and the delayed activation of PI3K/Akt and p42/p44 MAPK. Moreover, we showed that all these TGF-β1-mediated signaling events, including tubular network formation, were suppressed by incubating TGF-β1-stimulated endothelial cells with a soluble form of an EGF receptor (ErbB-1) or tyrphostin AG1478, a specific blocker of EGF receptor tyrosine kinase. Finally, addition of TGF-α alone poorly stimulated angiogenesis; however, by reducing cell death, it strongly potentiated the action of TGF-β1. We therefore propose that TGF-β1 promotes angiogenesis at least in part via the autocrine secretion of TGF-α, a cell survival growth factor, activating PI3K/Akt and p42/p44 MAPK.


2012 ◽  
Vol 287 (27) ◽  
pp. 23184-23195 ◽  
Author(s):  
Gang Chen ◽  
Paritosh Ghosh ◽  
Thomas O'Farrell ◽  
Rachel Munk ◽  
Louis J. Rezanka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document