scholarly journals Solanine induced apoptosis and increased chemosensitivity to Adriamycin in T-cell acute lymphoblastic leukemia cells

2018 ◽  
Author(s):  
Ying‑Jie Yi ◽  
Xiu‑Hong Jia ◽  
Jian‑Yong Wang ◽  
Jie‑Ru Chen ◽  
Hong Wang ◽  
...  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Kehan Li ◽  
Cunte Chen ◽  
Rili Gao ◽  
Xibao Yu ◽  
Youxue Huang ◽  
...  

AbstractT-cell acute lymphoblastic leukemia (T-ALL) is an aggressive subtype of leukemia with poor prognosis, and biomarkers and novel therapeutic targets are urgently needed for this disease. Our previous studies have found that inhibition of the B-cell leukemia/lymphoma 11B (BCL11B) gene could significantly promote the apoptosis and growth retardation of T-ALL cells, but the molecular mechanism underlying this effect remains unclear. This study intends to investigate genes downstream of BCL11B and further explore its function in T-ALL cells. We found that PTK7 was a potential downstream target of BCL11B in T-ALL. Compared with the healthy individuals (HIs), PTK7 was overexpressed in T-ALL cells, and BCL11B expression was positively correlated with PTK7 expression. Importantly, BCL11B knockdown reduced PTK7 expression in T-ALL cells. Similar to the effects of BCL11B silencing, downregulation of PTK7 inhibited cell proliferation and induced apoptosis in Molt-4 cells via up-regulating the expression of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and p27. Altogether, our studies suggest that PTK7 is a potential downstream target of BCL11B, and downregulation of PTK7 expression via inhibition of the BCL11B pathway induces growth retardation and apoptosis in T-ALL cells.


2018 ◽  
Vol 110 (1) ◽  
pp. 256-268 ◽  
Author(s):  
Ashanti Concepción Uscanga‐Palomeque ◽  
Kenny Misael Calvillo‐Rodríguez ◽  
Luis Gómez‐Morales ◽  
Eva Lardé ◽  
Thomas Denèfle ◽  
...  

HemaSphere ◽  
2019 ◽  
Vol 3 (S1) ◽  
pp. 416
Author(s):  
C. Prieto ◽  
M. Broux ◽  
S. Demeyer ◽  
L. Albertí-Servera ◽  
K. Jacobs ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2372-2372
Author(s):  
Kam Tong Leung ◽  
Karen Kwai Har Li ◽  
Samuel Sai Ming Sun ◽  
Paul Kay Sheung Chan ◽  
Yum Shing Wong ◽  
...  

Abstract Despite progress in the development of effective treatments against T-cell acute lymphoblastic leukemia (T-ALL), about 20% of patients still exhibit poor response to the current chemotherapeutic regimens and the cause of treatment failure in these patients remains largely unknown. In this study, we aimed at finding mechanisms that drive T-ALL cells resistant to chemotherapeutic agents. By screening etoposide sensitivity of a panel of T-ALL cell lines using DNA content and PARP cleavage as apoptosis markers, we identified an apoptosis-resistant cell line, Sup-T1. Western blot analysis and caspase activity assay showed that Sup-T1 cells were deficient in etoposide-induced activation of caspase-3 and caspase-9. In addition, mitochondrial cytochrome c release was not evident in etoposide-treated Sup-T1 cells. However, addition of exogenous cytochrome c in cell-free apoptosis reactions induced prominent caspase-3 activation, indicating that the chemoresistance observed in Sup-T1 cells was due to its insusceptibility to the drug-induced mitochondrial alterations. Analysis of the basal expression of the Bcl-2 family proteins revealed that the levels of Bcl-2 was higher in Sup-T1 cells, while Bax and BimEL levels were lower, when compared to etoposide-sensitive T-ALL cell lines. Gene silencing using antisense oligonucleotide to Bcl-2 and overexpression of Bax did not resensitize cells to etoposide-induced apoptosis. On the contrary, transient transfection of BimEL into Sup-T1 cells significantly restored etoposide sensitivity. Further experiments revealed that the lack of BimEL expression in Sup-T1 cells was due to the rapid degradation of newly-synthesized BimEL by the proteosomal pathway, as treatment of Sup-T1 cells with a proteosome inhibitor significantly restored the protein level of BimEL. Moreover, treatment with proteosome inhibitor resulted in mobility shift of BimEL, which was sensitive to phosphatase digestion. Furthermore, treatment of Sup-T1 cells with JNK inhibitor resulted in accumulation of BimEL, and pretreatment with JNK inhibitor restored sensitivity of Sup-T1 cells to etoposide-induced apoptosis, indicating that constitutive activation of the JNK pathway in Sup-T1 cells was responsible for promoting BimEL phosphorylation, and this may serve as a signal targeting BimEL to the proteosome for degradation. Altogether, our findings provide the first evidence that JNK activation correlates inversely with BimEL level by promoting its phosphorylation and degradation. This, in turn, reduces the sensitivity of T-ALL cells to chemotherapeutic agents.


RSC Advances ◽  
2016 ◽  
Vol 6 (52) ◽  
pp. 46366-46371 ◽  
Author(s):  
Seyed Mohammad Taghdisi ◽  
Noor Mohammad Danesh ◽  
Mohammad Ramezani ◽  
Khalil Abnous

Clinical application of vincristine in treatment of cancer is restricted because of its poor solubility and neuropathy.


Leukemia ◽  
2011 ◽  
Vol 25 (10) ◽  
pp. 1578-1586 ◽  
Author(s):  
B A Cardoso ◽  
S F de Almeida ◽  
A B A Laranjeira ◽  
M Carmo-Fonseca ◽  
J A Yunes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document