scholarly journals Optimal interleukin-7 receptor-mediated signaling, cell cycle progression and viability of T-cell acute lymphoblastic leukemia cells rely on casein kinase 2 activity

Haematologica ◽  
2016 ◽  
Vol 101 (11) ◽  
pp. 1368-1379 ◽  
Author(s):  
Alice Melão ◽  
Maureen Spit ◽  
Bruno A. Cardoso ◽  
João T. Barata
Blood ◽  
2001 ◽  
Vol 98 (5) ◽  
pp. 1524-1531 ◽  
Author(s):  
Joao T. Barata ◽  
Angelo A. Cardoso ◽  
Lee M. Nadler ◽  
Vassiliki A. Boussiotis

In normal T-cell development interleukin-7 (IL-7) functions as an antiapoptotic factor by regulating bcl-2 expression in immature thymocytes and mature T cells. Similar to what occurs in normal immature thymocytes, prevention of spontaneous apoptosis by IL-7 in precursor T-cell acute lymphoblastic leukemia (T-ALL) cells correlates with up-regulation of bcl-2. IL-7 is also implicated in leukemogenesis because IL-7 transgenic mice develop lymphoid malignancies, suggesting that IL-7 may regulate the generation and expansion of malignant cells. This study shows that in the presence of IL-7, T-ALL cells not only up-regulated bcl-2 expression and escaped apoptosis but also progressed in the cell cycle, resulting in sequential induction of cyclin D2 and cyclin A. Down-regulation of p27kip1 was mandatory for IL-7–mediated cell cycle progression and temporally coincided with activation of cyclin-dependent kinase (cdk)4 and cdk2 and hyperphosphorylation of Rb. Strikingly, forced expression of p27kip1 in T-ALL cells not only prevented cell cycle progression but also reversed IL-7–mediated up-regulation of bcl-2 and promotion of viability. These results show for the first time that a causative link between IL-7–mediated proliferation and p27kip1 down-regulation exists in malignant T cells. Moreover, these results suggest that p27kip1 may function as a tumor suppressor gene not only because it is a negative regulator of cell cycle progression but also because it is associated with induction of apoptosis of primary malignant cells.


2018 ◽  
Vol 2 (17) ◽  
pp. 2199-2213 ◽  
Author(s):  
Daniel Ribeiro ◽  
Alice Melão ◽  
Ruben van Boxtel ◽  
Cristina I. Santos ◽  
Ana Silva ◽  
...  

Key Points STAT5 is required for IL-7–mediated proliferation and viability, but it does not regulate Bcl-2 downstream from IL-7 in T-ALL cells. PIM1 is required for IL-7-induced leukemia cell cycle progression and proliferation and may be a therapeutic target for IL-7-reliant T-ALLs.


2004 ◽  
Vol 200 (5) ◽  
pp. 659-669 ◽  
Author(s):  
Joao T. Barata ◽  
Ana Silva ◽  
Joana G. Brandao ◽  
Lee M. Nadler ◽  
Angelo A. Cardoso ◽  
...  

Interleukin (IL)-7 is essential for normal T cell development. Previously, we have shown that IL-7 increases viability and proliferation of T cell acute lymphoblastic leukemia (T-ALL) cells by up-regulating Bcl-2 and down-regulating the cyclin-dependent kinase inhibitor p27kip1. Here, we examined the signaling pathways via which IL-7 mediates these effects. We investigated mitogen-activated protein kinase (MEK)–extracellular signal-regulated kinase (Erk) and phosphatidylinositol-3-kinase (PI3K)–Akt (protein kinase B) pathways, which have active roles in T cell expansion and have been implicated in tumorigenesis. IL-7 induced activation of the MEK–Erk pathway in T-ALL cells; however, inhibition of the MEK–Erk pathway by the use of the cell-permeable inhibitor PD98059, did not affect IL-7–mediated viability or cell cycle progression of leukemic cells. IL-7 induced PI3K-dependent phosphorylation of Akt and its downstream targets GSK-3, FOXO1, and FOXO3a. PI3K activation was mandatory for IL-7–mediated Bcl-2 up-regulation, p27kip1 down-regulation, Rb hyperphosphorylation, and consequent viability and cell cycle progression of T-ALL cells. PI3K signaling was also required for cell size increase, up-regulation of CD71, expression of the glucose transporter Glut1, uptake of glucose, and maintenance of mitochondrial integrity. Our results implicate PI3K as a major effector of IL-7–induced viability, metabolic activation, growth and proliferation of T-ALL cells, and suggest that PI3K and its downstream effectors may represent molecular targets for therapeutic intervention in T-ALL.


Blood ◽  
2011 ◽  
Vol 117 (10) ◽  
pp. 2901-2909 ◽  
Author(s):  
Renée M. Demarest ◽  
Nadia Dahmane ◽  
Anthony J. Capobianco

Abstract T-cell acute lymphoblastic leukemia (T-ALL) is a hematologic neoplasm characterized by malignant expansion of immature T cells. Activated NOTCH (NotchIC) and c-MYC expression are increased in a large percentage of human T-ALL tumors. Furthermore, c-MYC has been shown to be a NOTCH target gene. Although activating mutations of Notch have been found in human T-ALL tumors, there is little evidence that the c-MYC locus is altered in this neoplasm. It was previously demonstrated that Notch and c-Myc–regulated genes have a broadly overlapping profile, including genes involved in cell cycle progression and metabolism. Given that Notch and c-Myc appear to function similarly in T-ALL, we sought to determine whether these two oncogenes could substitute for each other in T-ALL tumors. Here we report that NOTCHIC is able to maintain T-ALL tumors formed in the presence of exogenous NOTCHIC and c-MYC when exogenous c-MYC expression is extinguished. In contrast, c-MYC is incapable of maintaining these tumors in the absence of NOTCHIC. We propose that failure of c-MYC to maintain these tumors is the result of p53-mediated apoptosis. These results demonstrate that T-ALL maintenance is dependent on NOTCHIC, but not c-MYC, demonstrating that NOTCH is oncogenic dominant in T-ALL tumors.


2014 ◽  
Vol 111 (10) ◽  
pp. 3805-3810 ◽  
Author(s):  
Takayuki Hoshii ◽  
Atsuo Kasada ◽  
Tomoki Hatakeyama ◽  
Masashi Ohtani ◽  
Yuko Tadokoro ◽  
...  

mTOR is an evolutionarily conserved kinase that plays a critical role in sensing and responding to environmental determinants. Recent studies have shown that fine-tuning of the activity of mTOR complexes contributes to organogenesis and tumorigenesis. Although rapamycin, an allosteric mTOR inhibitor, is an effective immunosuppressant, the precise roles of mTOR complexes in early T-cell development remain unclear. Here we show that mTORC1 plays a critical role in the development of both early T-cell progenitors and leukemia. Deletion ofRaptor, an essential component of mTORC1, produced defects in the earliest development of T-cell progenitors in vivo and in vitro.Deficiency ofRaptorresulted in cell cycle abnormalities in early T-cell progenitors that were associated with instability of the Cyclin D2/D3-CDK6 complexes; deficiency ofRictor, an mTORC2 component, did not have the same effect, indicating that mTORC1 and -2 control T-cell development in different ways. In a model of myeloproliferative neoplasm and T-cell acute lymphoblastic leukemia (T-ALL) evoked by Kras activation,Raptordeficiency dramatically inhibited the cell cycle in oncogenic Kras-expressing T-cell progenitors, but not myeloid progenitors, and specifically prevented the development of T-ALL. Although rapamycin treatment significantly prolonged the survival of recipient mice bearing T-ALL cells, rapamycin-insensitive leukemia cells continued to propagate in vivo. In contrast,Raptordeficiency in the T-ALL model resulted in cell cycle arrest and efficient eradication of leukemia. Thus, understanding the cell-context–dependent role of mTORC1 illustrates the potential importance of mTOR signals as therapeutic targets.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4400-4400
Author(s):  
Miyoung Lee ◽  
Aleksandra Filipovic ◽  
Curtis J Henry

Abstract Due to improvements in treatment strategies, the five-year event-free survival rate for pediatric patients with acute lymphoblastic leukemia (ALL) is 90%. However, patients with relapse and refractory disease fare much worse with 5-year overall survival rates of less than 50% in patients receiving chimeric antigen receptor T-cell therapy and fewer than 20% of patients surviving after receiving hematopoietic stem cell transplantation. These dismal outcomes for patients with relapse and refractory disease highlight the need for novel treatment regimens when current therapeutic options are exhausted. T-cell acute lymphoblastic leukemia (T-ALL) accounts for around 15% and 25% of ALL cases in pediatric and adult populations, respectively. This disease is driven by various molecular changes including alterations in the epigenome due, in part, to deregulated epigenetic machinery such as the polycomb repressive complex 2 (PRC2). Despite this observation, and ongoing clinical trials determining the utility of epigenetic drugs for treating various hematological malignancies, the role of the epigenome in T-ALL pathogenesis and the efficacy of epigenetic modifying drugs as treatments for this disease is heavily understudied. Galectins are members of s-type lectins which promote diverse biological processes including adhesion, signaling, and immunosuppression. Galectin-9 (Gal-9) is an emerging therapeutic target for solid cancers and hematological malignancies given that its presence is associated with poor outcomes for multiple cancers. In unpublished studies, we have found that Gal-9 is expressed on the surface of multiple human ALL subtypes with the highest basal surface expression found on T-ALL cells. To determine how this lectin impacts the function of human T-ALL cells, we treated leukemia cells with immunoglobulin control (Ig Ctrl) or anti-Gal-9 antibody (αGal-9Ab) and assessed the impact of treatment on cell cycle progression, DNA damage, and apoptosis. We used two αGal-9Ab clones for these experiments, a commercially available antibody and LYT-200 (a proprietary antibody in Phase I clinical trials for solid tumors from PureTech Health). Treatment with the commercially available antibody, but not Ctrl Ig, increased histone 3 trimethylation (H3K2me 3/H3K4me 3) with accompanying decreases in EZH2 and RING1A protein expression in human T-ALL cell lines. Antibody-induced epigenetic changes also promoted cell cycle progression (G2M transition), DNA damage, and extensive apoptosis (>90%) in multiple human T-ALL cell lines (n>6). Importantly, LYT-200 single-agent treatment also induced cell death in human T-ALL cells, demonstrating that blocking multiple epitopes on Gal-9 is sufficient to induce T-ALL cytotoxicity. These results highlight a previously unreported role for Galectin-9 in the epigenetic regulation and survival of human T-ALL cells. Given our observations that epigenome stability is critical for the survival of human T-ALL cells, we next sought to determine if the combination of αGal-9Ab treatment and epigenetic modifying drugs would further enhance the cytotoxicity of human T-ALL cells. We tested the combination of αGal-9Ab treatment and multiple drugs targeting either histone acetylation, methylation, or phosphorylation. Of these, we found that combining αGal-9Ab and GDC-0575 (a CHK1 inhibitor) resulted in extensive DNA damage and cytotoxicity (>98%). Mechanistically, we found αGal-9Ab treatment induces DNA damage in multiple human T-ALL lines, which leads to CHK1 activation. Given that GDC-0575 inhibits CHK1 activity, and CHK1 is a master regulator of the DNA damage response, we predict that the enhanced cytotoxicity of human T-ALL cells treated with the combination therapy results from the inability to effectively repair DNA damage induced by αGal-9Ab treatment. Our findings describe a previously unrecognized role for Gal-9 in T-ALL pathogenesis and demonstrates the cytotoxic effects αGal-9Ab treatment (including LYT-200) in preclinical models of human T-ALL. Disclosures Lee: PureTech Health: Research Funding. Filipovic: PureTech Health: Research Funding. Henry: PureTech Health: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document