scholarly journals Recombinant protein TRAIL-Mu3 enhances the antitumor effects in pancreatic cancer cells by strengthening the apoptotic signaling pathway

2021 ◽  
Vol 21 (6) ◽  
Author(s):  
Min Huang ◽  
Cheng Yi ◽  
Xian-Zhou Huang ◽  
Juan Yan ◽  
Li-Jia Wei ◽  
...  
BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fengjiao Wang ◽  
Lai Wang ◽  
Chao Qu ◽  
Lianyu Chen ◽  
Yawen Geng ◽  
...  

Abstract Background Kaempferol, a natural flavonoid, exhibits anticancer properties by scavenging reactive oxygen species (ROS). However, increasing evidence has demonstrated that, under certain conditions, kaempferol can inhibit tumor growth by upregulating ROS levels. In this study, we aimed to investigate whether kaempferol effectively suppresses pancreatic cancer through upregulation of ROS, and to explore the underlying molecular mechanism. Methods PANC-1 and Mia PaCa-2 cells were exposed to different concentrations of kaempferol. Cell proliferation and colony formation were evaluated by CCK-8 and colony formation assays. Flow cytometry was performed to assess the ROS levels and cell apoptosis. The mRNA sequencing and KEGG enrichment analysis were performed to identify differentially expressed genes and to reveal significantly enriched signaling pathways in response to kaempferol treatment. Based on biological analysis, we hypothesized that tissue transglutaminase (TGM2) gene was an essential target for kaempferol to induce ROS-related apoptosis in pancreatic cancer. TGM2 was overexpressed by lentivirus vector to verify the effect of TGM2 on the ROS-associated apoptotic signaling pathway. Western blot and qRT-PCR were used to determine the protein and mRNA levels, respectively. The prognostic value of TGM2 was analyzed by Gene Expression Profiling Interactive Analysis (GEPIA) tools based on public data from the TCGA database. Results Kaempferol effectively suppressed pancreatic cancer in vitro and in vivo. Kaempferol promoted apoptosis in vitro by increasing ROS generation, which was involved in Akt/mTOR signaling. TGM2 levels were significantly increased in PDAC tissues compared with normal tissues, and high TGM2 expression was positively correlated with poor prognosis in pancreatic cancer patients. Decreased TGM2 mRNA and protein levels were observed in the cells after treatment with kaempferol. Additionally, TGM2 overexpression downregulated ROS production and inhibited the abovementioned apoptotic signaling pathway. Conclusions Kaempferol induces ROS-dependent apoptosis in pancreatic cancer cells via TGM2-mediated Akt/mTOR signaling, and TGM2 may represent a promising prognostic biomarker for pancreatic cancer.


2018 ◽  
Vol 65 (5) ◽  
pp. 665-671 ◽  
Author(s):  
Jinhui Zhu ◽  
Yan Chen ◽  
Yun Ji ◽  
Yuanquan Yu ◽  
Yun Jin ◽  
...  

2009 ◽  
Vol 331 (1-2) ◽  
pp. 161-171 ◽  
Author(s):  
Jiachi Ma ◽  
Hirozumi Sawai ◽  
Nobuo Ochi ◽  
Yoichi Matsuo ◽  
Donghui Xu ◽  
...  

2018 ◽  
Vol 47 (3) ◽  
pp. 1007-1024 ◽  
Author(s):  
Yi-Gang Qian ◽  
Zhou Ye ◽  
Hai-Yong Chen ◽  
Zhen Lv ◽  
Ai-Bin Zhang ◽  
...  

Background/Aims: Pancreatic cancer is an aggressive malignancy as a result of highly metastatic potential. The current study was carried out to alter the expression of LINC01121 in pancreatic cancer, with the aim of elucidating its effects on the biological processes of cell proliferation, migration, invasion, and apoptosis. We hypothesized that both the GLP1R gene and cAMP/PKA signaling pathway participate in the aforementioned process. Methods: Microarray data (GSE14245, GSE27890 and GSE16515) and annotating probe files linked to pancreatic cancer were downloaded through the GEO database. The Multi Experiment Matrix (MEM) site was used to predict the target gene of lncRNA. Both pancreatic cancer tissues (n = 56) and paracancerous tissues (n = 45) were collected from patients diagnosed with pancreatic cancer. Immunohistochemistry was applied to identify the positive expression rate of GLP1R protein. Isolated pancreatic cancer cells and PANC-1 cells were independently classified into the blank, negative control (NC), LINC01121 vector, siRNA-LINC01121, siRNA-GLP1R and siRNA-LINC01121 + siRNA-GLP1R groups. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis were applied to detect the expressions of LINC01121, GLP1R, cAMP, PKA, CREB, Bcl-2, Bad and PCNA. Cell proliferation, migration, invasion, cycle progression, and apoptosis were examined by MTT assay, scratch test, Transwell assay and flow cytometry analyses of Annexin V-FITC/PI staining. Results: Observations were made indicating that LINC01121 was highly expressed, while low expressions of GLP1R in pancreatic cancer were detected based on microarray data, which was largely in consistent with the data collected of LINC01121 and GLP1R within the tissues. The target prediction program and luciferase activity analysis was testament to the notion suggesting that GLP1R was indeed a target of LINC01121. In contrast to the blank and NC groups, the LINC01121 vector group exhibited increased expressions of LINC01121; decreased mRNA and protein levels of GLP1R, Bad, cAMP, and PKA; increased protein levels of CREB, Bcl-2, PCNA, p-PKA and p-CREB; increased cell proliferation, migration and invasion; and decreased cell apoptosis. There was no significant difference detected among the blank, NC, and siRNA-LINC01121 + siRNA-GLP1R groups, except that decreased LINC01121 expression was determined in the siRNA-LINC01121 + siRNA-GLP1R group. Parallel data were observed in the pancreatic cancer cells and PANC-1 cells. Conclusion: The current study presents evidence indicating that LINC01121 might inhibit apoptosis while acting to promote proliferation, migration, and invasion of pancreatic cancer cells, supplementing the stance held that LINC01121 functions as a tumor promoter by means of its involvement in the process of translational repression of the GLP1R and inhibition of the cAMP/PKA signaling pathway.


Redox Biology ◽  
2019 ◽  
Vol 22 ◽  
pp. 101131 ◽  
Author(s):  
Yunjiang Zhou ◽  
Yang Zhou ◽  
Mengdi Yang ◽  
Keke Wang ◽  
Yisi Liu ◽  
...  

Tumor Biology ◽  
2013 ◽  
Vol 35 (3) ◽  
pp. 2461-2471 ◽  
Author(s):  
Meiying Li ◽  
Xuejun Yu ◽  
Hui Guo ◽  
Limei Sun ◽  
Aijun Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document