scholarly journals Regulation mechanism of Fbxw7-related signaling pathways (Review)

2015 ◽  
Vol 34 (5) ◽  
pp. 2215-2224 ◽  
Author(s):  
ZHENYU ZHOU ◽  
CHUANCHAO HE ◽  
JIE WANG
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Qingqing Guo ◽  
Decheng Bi ◽  
Mingcan Wu ◽  
Boming Yu ◽  
Lang Hu ◽  
...  

Abstract Background Euglena is a new super health food resource that is rich in the natural polysaccharide paramylon, a linear β-1,3-glucan with various biological activities including activity on the immune system in different cell lines and animals. Despite these reports, the immune regulation mechanism of paramylon is still unclear. Results We investigate the signaling pathways paramylon impacts in immune macrophages. In RAW264.7 macrophages, sonicated and alkalized paramylon oligomers up-regulated inducible nitric oxide synthase (iNOS) and increased secretion of nitric oxide (NO), interleukin (IL)-6 and tumor necrosis factor (TNF)-α, in a concentration-dependent manner. In addition, paramylon activated the nuclear factor-κB(NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways and inhibiting these pathways attenuated the paramylon-induced secretion of the above immune-mediators. Conclusions These results demonstrate that Euglena gracilis paramylon modulates the immune system via activation of the NF-κB and MAPK signaling pathways and thus has potential therapeutic benefits.


2020 ◽  
Author(s):  
Qingqing Guo ◽  
Decheng Bi ◽  
Mingcan Wu ◽  
Boming Yu ◽  
Lang Hu ◽  
...  

Abstract Background: Euglena is a new super health food resource that is rich in the natural polysaccharide paramylon, a linear β-1,3-glucan with various biological activities including activity on the immune system in different cell lines and animals. Despite these reports, the immune regulation mechanism of paramylon is still unclear. Results: We investigate the signaling pathways paramylon impacts in immune macrophages. In RAW264.7 macrophages, sonicated and alkalized paramylon oligomers up-regulated inducible nitric oxide synthase (iNOS) and increased secretion of nitric oxide (NO), interleukin (IL)-6 and tumor necrosis factor (TNF)-α, in a concentration-dependent manner. In addition, paramylon activated the nuclear factor-κB(NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways and inhibiting these pathways attenuated the paramylon-induced secretion of the above immune-mediators. Conclusions: These results demonstrate that Euglena gracilis paramylon modulates the immune system via activation of the NF-κB and MAPK signaling pathways and thus has potential therapeutic benefits.


2019 ◽  
Author(s):  
Qingqing Guo ◽  
Decheng Bi ◽  
Mingcan Wu ◽  
Boming Yu ◽  
Lang Hu ◽  
...  

Abstract Background: Euglena as a new super health food resource that is rich in the natural polysaccharide paramylon, a linear β-1,3-glucan with various biological activities including activity on the immune system in different cell lines and animals. Despite these reports, the immune regulation mechanism of paramylon is still unclear. Results: We investigate the signaling pathways paramylon impacts in immune macrophages. In RAW264.f:7 macrophages, sonicated and alkalized paramylon oligomers up-regulated inducible nitric oxide synthase (iNOS) and increased secretion of nitric oxide (NO), interleukin (IL)-6 and tumor necrosis factor (TNF)-α, in a concentration-dependent manner. In addition, paramylon activated the nuclear factor-κB(NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways and inhibiting these pathways attenuated the paramylon-induced secretion of the above immune-mediators. Conclusions: These results demonstrate that Euglena gracilis paramylon modulates the immune system via activation of the NF-κB and MAPK signaling pathways and thus has potential therapeutic benefits.


Author(s):  
GaiHong An ◽  
Yu Zhang ◽  
LiJun Fan ◽  
JiaJun Chen ◽  
MengFan Wei ◽  
...  

Long term heat exposure (HE) leads to estrous cycle disorder (ECD) in female rats and damages reproductive function. However, the regulation mechanism of vaginal microorganisms and serum metabolomics remains unclear. This study aimed to explore the effects of microbes on the vaginal secretions of rats with ECD and describe the serum metabolomics characteristics and their relationship with vaginal microorganisms. The alterations in the serum levels of neurotransmitters were used to verify the possible regulatory pathways. The relative abundance, composition, and colony interaction network of microorganisms in the vaginal secretions of rats with ECD changed significantly. The metabolomics analysis identified 22 potential biomarkers in the serum including lipid metabolism, amino acid metabolism, and mammalian target of rapamycin and gonadotropin-releasing hormone (GnRH) signaling pathways. Further, 52 pairs of vaginal microbiota–serum metabolites correlations (21 positive and 31 negative) were determined. The abundance of Gardnerella correlated positively with the metabolite L-arginine concentration and negatively with the oleic acid concentration. Further, a negative correlation was found between the abundance of Pseudomonas and the L-arginine concentration and between the metabolite benzoic acid concentration and the abundance of Adlercreutzia. These four bacteria–metabolite pairs had a direct or indirect relationship with the estrous cycle and reproduction. The glutamine, glutamate, and dopamine levels were significantly uncontrolled. The former two were closely related to GnRH signaling pathways involved in the development and regulation of HE-induced ECD in rats. Serum neurotransmitters partly reflected the regulatory effect of vaginal microorganisms on the host of HE-induced ECD, and glutamatergic neurotransmitters might be closely related to the alteration in vaginal microorganisms. These findings might help comprehend the mechanism of HE-induced ECD and propose a new intervention based on vaginal microorganisms.


2020 ◽  
Author(s):  
Qingqing Guo ◽  
Decheng Bi ◽  
Mingcan Wu ◽  
Boming Yu ◽  
Lang Hu ◽  
...  

Abstract Background: Euglena is a new super health food resource that is rich in the natural polysaccharide paramylon, a linear β-1,3-glucan with various biological activities including activity on the immune system in different cell lines and animals. Despite these reports, the immune regulation mechanism of paramylon is still unclear. Results: We investigate the signaling pathways paramylon impacts in immune macrophages. In RAW264.7 macrophages, sonicated and alkalized paramylon oligomers up-regulated inducible nitric oxide synthase (iNOS) and increased secretion of nitric oxide (NO) , interleukin (IL)-6 and tumor necrosis factor (TNF)- α, in a concentration-dependent manner. In addition, paramylon activated the nuclear factor-κB(NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways and inhibiting these pathways attenuated the paramylon-induced secretion of the above immune-mediators. Conclusions: These results demonstrate that Euglena gracilis paramylon modulates the immune system via activation of the NF-κB and MAPK signaling pathways and thus has potential therapeutic benefits.


2021 ◽  
Vol 12 ◽  
Author(s):  
Guosong Zhu ◽  
Jiaqiang Zhang ◽  
Yali Yang ◽  
Haoran Zhang ◽  
Wenwen Jin ◽  
...  

Ethnopharmacological relevance:Scutellaria baicalensis georgi is one of the most widely studied TCMs; its effects in ALI have been studied in a large number of experiments, and the efficacy of volatile oil from TCM remains to be studied.Aim: The volatile component of Scutellaria baicalensis georgi was selected to act on the key target of acute lung injury and was preliminarily studied for its specific molecular mechanism.Methods: The volatile active substances of Scutellaria baicalensis georgi were extracted by GC–MS, and the active ingredients related with the occurrence and development of acute lung injury were searched and matched by the TCMSP database. The pharmacologic data and analysis platform of TCM were used to retrieve and screen for the volatile active components and the possible therapeutic targets of Scutellaria baicalensis georgi. In addition, acute lung injury was searched in the disease target database to identify the corresponding disease target proteins, thereby establishing a protein–protein interaction network. Finally, the effects of wogonin on the apoptotic and inflammatory factors in the acute lung injury cell model were analyzed experimentally.Results: We identified 100 candidate targets and successfully constructed a complex target network. The targets identified by the above gene enrichment analysis played important roles in the autoimmune disease cell cycle apoptosis and related signaling pathways. The KEGG pathway analysis showed that most of the target genes were involved in the inflammatory response regulation of the TRP, PI3K-Akt, and IL-17 signaling pathways. The participation of wogonin in the specific regulatory pathways of PI3K-Akt signaling and IL-17 signaling was verified through experiments. In the lung-injured cell model, the results showed that wogonin inhibited the apoptosis of injured lung cells by inhibiting the expression of BAD gene and the activation of cleaved caspase-3 gene while increasing Bcl-2 expression. In addition, wogonin inhibited the expression of the abovementioned inflammatory factors and further inhibited the inflammatory response in the lung injury cells.Conclusion: The results of pharmacological network analysis can predict and explain the regulation mechanism of multi-target and multi-pathway of TCM components. This study identified the potential target and important pathway of wogonin in regulating acute lung injury. At the same time, the accuracy of network pharmacological prediction is also preliminarily verified by molecular biology experiment.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Huawei Li ◽  
Liyuan Wang ◽  
Yini Mai ◽  
Weijuan Han ◽  
Yujing Suo ◽  
...  

Abstract Background Persimmon (Diospyros kaki Thunb.) has various labile sex types, and studying its sex differentiation can improve breeding efficiency. However, studies on sexual regulation patterns in persimmon have focused mainly on monoecy and dioecy, whereas little research has been published on andromonoecy. In order to reveal the sex differentiation regulation mechanism of andromonoecious persimmon, we performed histological and cytological observations, evaluated OGI and MeGI expression and conducted phytohormones assays and mRNA and small RNA transcriptome analyses of the male and hermaphroditic floral buds of the andromonoecious persimmon ‘Longyanyeshi 1’. Results Stages 2 and 4 were identified as the critical morphological periods for sex differentiation of ‘Longyanyeshi 1’ by histological and cytological observation. At both stages, OGI was differentially expressed in male and hermaphroditic buds, but MeGI was not. This was different from their expressions in dioecious and monoecious persimmons. Meantime, the results of phytohormones assays showed that high IAA, ABA, GA3, and JA levels at stage 2 may have promoted male floral bud differentiation. However, high JA levels at stage 4 and high ZT levels at stages 2 and 4 may have promoted hermaphroditic floral bud differentiation. In these phytohormone biosynthesis and signaling pathways, 52 and 54 differential expression genes (including Aux/IAA, ARFs, DELLA, AHP, A-ARR, B-ARR, CYP735A, CRE1, PP2C, JAZ, MYC2, COI1, CTR1, SIMKK, ACO, and MPK6) were identified, respectively. During the development of male floral buds, five metacaspases genes may have been involved in pistil abortion. In addition, MYB, FAR1, bHLH, WRKY, and MADS transcription factors might play important roles in persimmon floral bud sex differentiation. Noteworthy, miR169v_1, miR169e_3, miR319_1, and miR319 were predicted to contribute to phytohormone biosynthesis and signaling pathways and floral organogenesis and may also regulate floral bud sex differentiation. Conclusion The present study revealed the differences in morphology and phytohormones content between male and hermaphroditic floral buds of ‘Longyanyeshi 1’ during the process of sex differentiation, and identified a subset of candidate genes and miRNAs putatively associated with its sex differentiation. These findings can provide a foundation for molecular regulatory mechanism researching on andromonoecious persimmon.


2020 ◽  
Author(s):  
Qingqing Guo ◽  
Decheng Bi ◽  
Mingcan Wu ◽  
Boming Yu ◽  
Lang Hu ◽  
...  

Abstract Background: Euglena is a new super health food resource that is rich in the natural polysaccharide paramylon, a linear β-1,3-glucan with various biological activities including activity on the immune system in different cell lines and animals. Despite these reports, the immune regulation mechanism of paramylon is still unclear. Results: We investigate the signaling pathways paramylon impacts in immune macrophages. In RAW264.7 macrophages, sonicated and alkalized paramylon oligomers up-regulated inducible nitric oxide synthase (iNOS) and increased secretion of nitric oxide (NO) , interleukin (IL)-6 and tumor necrosis factor (TNF)- α, in a concentration-dependent manner. In addition, paramylon activated the nuclear factor-κB(NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways and inhibiting these pathways attenuated the paramylon-induced secretion of the above immune-mediators. Conclusions: These results demonstrate that Euglena gracilis paramylon modulates the immune system via activation of the NF-κB and MAPK signaling pathways and thus has potential therapeutic benefits.


2020 ◽  
Vol 134 (5) ◽  
pp. 473-512 ◽  
Author(s):  
Ryan P. Ceddia ◽  
Sheila Collins

Abstract With the ever-increasing burden of obesity and Type 2 diabetes, it is generally acknowledged that there remains a need for developing new therapeutics. One potential mechanism to combat obesity is to raise energy expenditure via increasing the amount of uncoupled respiration from the mitochondria-rich brown and beige adipocytes. With the recent appreciation of thermogenic adipocytes in humans, much effort is being made to elucidate the signaling pathways that regulate the browning of adipose tissue. In this review, we focus on the ligand–receptor signaling pathways that influence the cyclic nucleotides, cAMP and cGMP, in adipocytes. We chose to focus on G-protein–coupled receptor (GPCR), guanylyl cyclase and phosphodiesterase regulation of adipocytes because they are the targets of a large proportion of all currently available therapeutics. Furthermore, there is a large overlap in their signaling pathways, as signaling events that raise cAMP or cGMP generally increase adipocyte lipolysis and cause changes that are commonly referred to as browning: increasing mitochondrial biogenesis, uncoupling protein 1 (UCP1) expression and respiration.


Sign in / Sign up

Export Citation Format

Share Document