scholarly journals Phytohormone and integrated mRNA and miRNA transcriptome analyses and differentiation of male between hermaphroditic floral buds of andromonoecious Diospyros kaki Thunb

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Huawei Li ◽  
Liyuan Wang ◽  
Yini Mai ◽  
Weijuan Han ◽  
Yujing Suo ◽  
...  

Abstract Background Persimmon (Diospyros kaki Thunb.) has various labile sex types, and studying its sex differentiation can improve breeding efficiency. However, studies on sexual regulation patterns in persimmon have focused mainly on monoecy and dioecy, whereas little research has been published on andromonoecy. In order to reveal the sex differentiation regulation mechanism of andromonoecious persimmon, we performed histological and cytological observations, evaluated OGI and MeGI expression and conducted phytohormones assays and mRNA and small RNA transcriptome analyses of the male and hermaphroditic floral buds of the andromonoecious persimmon ‘Longyanyeshi 1’. Results Stages 2 and 4 were identified as the critical morphological periods for sex differentiation of ‘Longyanyeshi 1’ by histological and cytological observation. At both stages, OGI was differentially expressed in male and hermaphroditic buds, but MeGI was not. This was different from their expressions in dioecious and monoecious persimmons. Meantime, the results of phytohormones assays showed that high IAA, ABA, GA3, and JA levels at stage 2 may have promoted male floral bud differentiation. However, high JA levels at stage 4 and high ZT levels at stages 2 and 4 may have promoted hermaphroditic floral bud differentiation. In these phytohormone biosynthesis and signaling pathways, 52 and 54 differential expression genes (including Aux/IAA, ARFs, DELLA, AHP, A-ARR, B-ARR, CYP735A, CRE1, PP2C, JAZ, MYC2, COI1, CTR1, SIMKK, ACO, and MPK6) were identified, respectively. During the development of male floral buds, five metacaspases genes may have been involved in pistil abortion. In addition, MYB, FAR1, bHLH, WRKY, and MADS transcription factors might play important roles in persimmon floral bud sex differentiation. Noteworthy, miR169v_1, miR169e_3, miR319_1, and miR319 were predicted to contribute to phytohormone biosynthesis and signaling pathways and floral organogenesis and may also regulate floral bud sex differentiation. Conclusion The present study revealed the differences in morphology and phytohormones content between male and hermaphroditic floral buds of ‘Longyanyeshi 1’ during the process of sex differentiation, and identified a subset of candidate genes and miRNAs putatively associated with its sex differentiation. These findings can provide a foundation for molecular regulatory mechanism researching on andromonoecious persimmon.

2019 ◽  
Vol 13 (5) ◽  
pp. 891-905 ◽  
Author(s):  
Matthew J. Brooks ◽  
Holly Y. Chen ◽  
Ryan A. Kelley ◽  
Anupam K. Mondal ◽  
Kunio Nagashima ◽  
...  

2015 ◽  
Vol 34 (5) ◽  
pp. 2215-2224 ◽  
Author(s):  
ZHENYU ZHOU ◽  
CHUANCHAO HE ◽  
JIE WANG

1995 ◽  
Vol 120 (6) ◽  
pp. 1010-1017 ◽  
Author(s):  
Peter M Hirst ◽  
David C Ferree

Floral development was studied in buds of `Starkspur Supreme Delicious' apple trees growing on B.9, M.26 EMLA, M.7 EMLA, P.18, and seedling rootstocks. In each of 3 years, buds were sampled from the previous years growth at intervals throughout the growing season and dissected to determine whether the apex was domed, indicating the start of floral development. Number of bud scales and true leaves increased during the early part of the growing season, but remained fairly constant beyond 70 days after full bloom. The type of rootstock did not affect the number of bud scales or transition leaves, and effects on true leaf numbers were small and inconsistent. Final bract number per floral bud was similarly unaffected by rootstock. The proportion of buds in which flowers were formed was influenced by rootstock in only one year of the study, which was characterized by high temperatures and low rainfall over the period of flower formation. Bracts were observed only in floral buds, and became visible after doming of bud apices had occurred. Flowers were formed during the first 20 days in August, regardless of rootstock or year. The appendage number of vegetative buds was constant from 70 days after full bloom until the end of the growing season, but the number of appendages in floral buds increased due to the continued production of bracts. The critical bud appendage number for `Starkspur Supreme Delicious' before flower formation was 20, and was stable among rootstocks and years. Buds with diameters above 3.1 mm were generally floral, but on this basis only 65% of buds could be correctly classified. Spur leaf number, spur leaf area, and spur leaf dry weight were not good predictors of floral formation within the spur bud.


2017 ◽  
Vol 11 (1) ◽  
pp. 9-15
Author(s):  
Feng Zou ◽  
Jinghua Duan ◽  
Huan Xiong ◽  
Deyi Yuan ◽  
Lin Zhang ◽  
...  

Ziziphus jujuba Mill. is one of the most important fruit crops and has been cultivated in China for more than 4000 years. Z. jujuba fruit is rich in nutritional and medicinal values. Compared to other wood fruits, Z. jujuba is unique in its flowering and fruiting characteristics. Floral buds differentiation and formation of Z. jujuba is an essential process that affects yield. Z. jujuba ‘Jinsi No.4’ blooms profusely, yet its final yield is low. In this study, the floral bud differentiation and development of ‘Jinsi No.4’ were examined by paraffin section. Results showed that the floral buds of ‘Jinsi No.4’ differentiated in the current year and started from early April. The duration of a single flower differentiation was short, taking only 7 days for maturation of flowers buds. Floral bud differentiation of ‘Jinsi No.4’ can be divided into six stages, i.e., pre-differentiation, initial differentiation, sepal differentiation, petal differentiation, stamen differentiation, and pistil differentiation. Flower development experienced seven stages, i.e., alabastrum, alabastrum break, sepal flattening, petal flattening, stamen flattening, filament withering, and ovule swelling. Dysplasia was observed in some floral organs in Z. jujuba ‘Jinsi No.4’, suggesting that the dysplasia of floral organs may be one of the main reasons for low yields. Our findings on flower bud development in ‘Jinsi No.4’ will contribute to its production and flowering management in Hunan area of southern China.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 234
Author(s):  
Wang ◽  
Li ◽  
Suo ◽  
Han ◽  
Diao ◽  
...  

Most varieties of persimmon (Diospyros kaki Thunb.) are gynoecious, while just a few are either monoecious, androgynomonoecious, or androecious. Persimmon flowers initially contain the original androecium and gynoecium followed by arrest of either pistil or stamen primordia before maturity. Abortion of inappropriate primordium in persimmon may be related to programmed cell death (PCD). To test this hypothesis, hematoxylin and eosin (H&E) staining, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay, cyt-c immunohistochemistry (IHC) assay, transmission electron microscopy (TEM) observation, and real-time quantitative polymerase chain reaction (RT-qPCR) were used to clarify the occurrence and molecular regulatory mechanism of PCD in male and female floral buds during the 14 days prior to the second crucial morphological stage when inappropriate sexual primordia were arrested to form unisexual flowers. Accordingly, dead cells in inappropriate sex organs were largely accumulated during the microsporocyte and macrosporocyte period of male and female floral buds, respectively. This may explain the abortion of inappropriate sex organs, leading to unisexual flowers. PCD is necessary for normal growth and development in persimmons, as dead cells could also be observed in the normal flower organs. High levels of a gene homologous to AMC9 may have accelerated the arrest of the pistil primordium during differentiation, leading to male unisexual flowers, and high levels of genes homologous to MeGI, BAG5, AifA, and HSP70 in female floral buds were positively correlated with the arrest of stamen primordium. Future studies may try to transform unisexual flowers into hermaphroditic flowers by the regulation of PCD artificially, which will be helpful to the controlled pollination experiments.


2020 ◽  
Author(s):  
Fengyan Zhou ◽  
Qin Yu ◽  
Yong Zhang ◽  
Chuan-Chun Yao ◽  
Yun-Jing Han ◽  
...  

Abstract Background: Herbicides are the major tool for controlling large populations of yield depleting weeds. However, overreliance on herbicides has resulted in weed adaptation and herbicide resistance. In recent years, early flowering weed species related to herbicide resistance is emerging, which may cause seed loss before crop harvest, creating a new problem for non-chemical weed management. However, mechanisms regulating early flowering in weedy species is rarely investigated. Results: The MADS-box gene family plays an important role in flowering time regulation and floral organogenesis. In this study, a homolog gene of AGAMOUS sub-family (referred to as PfAG5) of the MADS-box family was cloned from plants of an early flowering Polypogon fugax population resistant to the ACCase inhibitor herbicide (clodinafop-propargyl). The PfAG5 gene was functionally characterized in Arabidopsis thaliana. Over-expression of the PfAG5 gene in Arabidopsis resulted in early flowering with abnormal flowers (e.g. small petals, short plants and reduced seed set) compared to the wild type. The expression of the PfAG5 gene was high in leaves and flowers, but low in pods in transgenic Arabidopsis. The PfAG5 gene was earlier and higher expressed in the resistant (R) than the susceptible (S) P. fugax plants. Furthermore, one protein (FRIGIDA-like protein) interacting with PfAG5 in R P. fugax was identified by the yeast two-hybrid system with relevance to flowering time regulation. Conclusions: These results suggest that the PfAG5 gene is prominently involved in modulating early flowering in P. fugax. This study provides the first evidence for the regulation mechanism of early flowering in an herbicide resistant weed species.


2019 ◽  
Vol 246 ◽  
pp. 987-997 ◽  
Author(s):  
Shuzhan Li ◽  
Peng Sun ◽  
Gaigai Du ◽  
Liyuan Wang ◽  
Huawei Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document