Effects of honey bee virus prevalence, Varroa destructor load and queen condition on honey bee colony survival over the winter in Belgium

2011 ◽  
Vol 50 (3) ◽  
pp. 195-202 ◽  
Author(s):  
Bach Kim Nguyen ◽  
Magali Ribière ◽  
Dennis vanEngelsdorp ◽  
Chantal Snoeck ◽  
Claude Saegerman ◽  
...  
Diversity ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 99 ◽  
Author(s):  
Hannes Oberreiter ◽  
Robert Brodschneider

We conducted a citizen science survey on overwinter honey bee colony losses in Austria. A total of 1534 beekeepers with 33,651 colonies reported valid loss rates. The total winter loss rate for Austria was 15.2% (95% confidence interval: 14.4–16.1%). Young queens showed a positive effect on colony survival and queen-related losses. Observed queen problems during the season increased the probability of losing colonies to unsolvable queen problems. A notable number of bees with crippled wings during the foraging season resulted in high losses and could serve as an alarm signal for beekeepers. Migratory beekeepers and large operations had lower loss rates than smaller ones. Additionally, we investigated the impact of several hive management practices. Most of them had no significant effect on winter mortality, but purchasing wax from outside the own operation was associated with higher loss rates. Colonies that reported foraging on maize and late catch crop fields or collecting melezitose exhibited higher loss rates. The most common Varroa destructor control methods were a combination of long-term formic acid treatment in summer and oxalic acid trickling in winter. Biotechnical methods in summer had a favourable effect on colony survival.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kelly Kulhanek ◽  
Andrew Garavito ◽  
Dennis vanEngelsdorp

AbstractA leading cause of managed honey bee colony mortality in the US, Varroa destructor populations typically exceed damaging levels in the fall. One explanation for rapid population increases is migration of mite carrying bees between colonies. Here, the degree to which bees from high and low mite donor colonies move between apiaries, and the effect visitation has on Varroa populations was monitored. More bees from low mite colonies (n = 37) were detected in receiver apiaries than bees from high mite colonies (n = 10, p < 0.001). Receiver colony Varroa population growth was associated with visitation by non-natal bees (p = 0.03), but not high mite bees alone (p = 0.19). Finally, colonies lacking robbing screens experienced faster Varroa population growth than screened neighbors (p = 0.01). Results indicate visiting non-natal bees may vector mites to receiver colonies. These results do not support the current two leading theories regarding mite immigration – the “mite bomb” theory (bees from high mite colonies emigrating to collapsing colonies), or the “robbing” theory (natal robbing bees return home with mites from collapsing colonies). Potential host-parasite effects to bee behavior, as well as important management implications both for Varroa treatment regimens and breeding Varroa resistant bees are discussed.


2016 ◽  
Vol 85 (3) ◽  
pp. 255-260
Author(s):  
Ivana Papežíková ◽  
Miroslava Palíková ◽  
Stanislav Navrátil ◽  
Radka Heumannová ◽  
Michael Fronc

Oxalic acid is one of the organic acids used for controlling Varroa destructor, a mite parasitizing the honey bee (Apis mellifera). The aim of this work was to examine the effect of oxalic acid applied by sublimation on honey bee colony fitness, and to compare it with the effect of amitraz, a routinely used synthetic acaricide. Bee colonies of equal strength were randomly divided into two groups. In December 2014, one group was treated with amitraz in the form of aerosol, and the second group was treated with oxalic acid applied by sublimation. The colonies were monitored over winter. Dead bees found at the bottom of the hive were counted regularly and examined microscopically for infection with Nosema sp. (Microsporidia). At the end of March 2015, living foragers from each hive were sampled and individually examined for Nosema sp. infection. Colony strength was evaluated at the beginning of April. No adverse effect of oxalic acid on colony strength was observed despite the fact that the total number of dead bees was non-significantly higher in the oxalic acid-treated group. Examination of dead bees for Nosema infection did not reveal significant differences in spore numbers between the experimental groups. There was a substantial difference in living individuals, however, with a significantly higher amount of spores per bee found in the amitraz-treated colonies compared to the oxalic acid-treated colonies. Compared to amitraz, oxalic acid applied by sublimation showed no adverse effects on bee colony fitness or on successful overwintering.


PLoS ONE ◽  
2017 ◽  
Vol 12 (3) ◽  
pp. e0172591 ◽  
Author(s):  
Antoine Jacques ◽  
Marion Laurent ◽  
Magali Ribière-Chabert ◽  
Mathilde Saussac ◽  
Stéphanie Bougeard ◽  
...  

Bee World ◽  
2021 ◽  
pp. 1-3
Author(s):  
Raffaele Dall’Olio ◽  
Fanny Mondet ◽  
Alexis Beaurepaire ◽  
Martin Gabel ◽  
Barbara Locke ◽  
...  

2010 ◽  
Vol 49 (1) ◽  
pp. 93-94 ◽  
Author(s):  
Norman L. Carreck ◽  
Brenda V. Ball ◽  
Stephen J. Martin

2019 ◽  
Vol 17 (3) ◽  
pp. e0504 ◽  
Author(s):  
Sandra Barroso-Arévalo ◽  
Marina Vicente-Rubiano ◽  
José A. Ruiz ◽  
Antonio Bentabol ◽  
José M. Sánchez-Vizcaíno

Aim of study: Colony losses of the western honey bee Apis mellifera have increased alarmingly in recent years. These losses have been attributed to nutritional deficiency, environmental conditions, viral infection and the global presence of the ectoparasite mite Varroa destructor. Ensuring pollen availability may improve colony health, so the present study aimed to examine whether the diversity of pollen collected by the colony as well as landscape characteristics of apiaries influence colony health.Area of study: Tenerife Island (Canary Islands, Spain).Material and methods: Colonies at eight apiaries were sampled in late summer to determine colony strength, presence of varroa and load of DWV. Pollen was collected during six months and analyzed. Landscape of each apiary was spatially analyzed.Main results: Pollen diversity did not correlate significantly with colony strength or the load of DWV, but it positively correlated with varroa levels. In contrast, DWV load correlated with varroa infestation, and both variables negatively correlated with colony strength. Weak colonies were located in landscapes with areas less suitable for bee nutrition.Research highlights: These results suggest that DWV and varroa infection as well as landscape characteristics influence colony survival, while pollen diversity on its own does not seem to have direct relationship. Our findings highlight the usefulness of DWV and varroa as predictors of colony losses, and they suggest the need to carefully assess honey bee apiary location in order to ensure adequate nutritional resources.


Sign in / Sign up

Export Citation Format

Share Document