scholarly journals Effect of bismuth additions on the thermophysical and thermodynamical properties of E-AlMgSi (Aldrey) aluminum semiconductor alloy

2020 ◽  
Vol 6 (3) ◽  
pp. 107-112
Author(s):  
Izatullo N. Ganiev ◽  
Aslam P. Abulakov ◽  
Jamshed H. Jayloev ◽  
Umarali Sh. Yakubov ◽  
Amirsho G. Safarov ◽  
...  

The economic feasibility of using aluminum as a conductive material is explained by the favorable ratio of its cost to the cost of copper. In addition, one should take into account that the cost of aluminum has remained virtually unchanged for many years. When using conductive aluminum alloys for the manufacture of thin wire, winding wire, etc., certain difficulties may arise in connection with their insufficient strength and a small number of kinks before fracture. Aluminum alloys have been developed in recent years which even in a soft state have strength characteristics that allow them to be used as a conductive material. The electrochemical industry is one of the promising application fields of aluminum. E-AlMgSi (Aldrey) conductor aluminum alloys represent this group of alloys. This work presents data on the temperature dependence of heat capacity, heat conductivity and thermodynamic functions of the E-AlMgSi (Aldrey) aluminum alloy doped with bismuth. The studies have been carried out in "cooling" mode. It has been shown that the heat capacity and thermodynamic functions of the E-AlMgSi (Aldrey) aluminum alloy doped with bismuth increase with temperature and the Gibbs energy decreases. Bismuth additions of up to 1 wt.% reduce the heat capacity, heat conductivity, enthalpy and entropy of the initial alloy and increase the Gibbs energy.

Author(s):  
I. N. Ganiev ◽  
A. P. Abdulakov ◽  
J. H. Jayloev ◽  
U. Sh. Yakubov ◽  
A. G. Safarov ◽  
...  

The economic feasibility of using aluminum as a conductive material is explained by the favorable ratio of its cost to the cost of copper. It is also important that the cost of aluminum for many years remains virtually unchanged.When using conductive aluminum alloys for the manufacture of thin wire, winding wire, etc. Certain difficulties may arise in connection with their insufficient strength and a small number of kinks before fracture. In recent years, aluminum alloys have been developed, which even in a soft state have strength characteristics that allow them to be used as a conductive material.One of the promising areas for the use of aluminum is the electrical industry. Conducting aluminum alloys of the E-AlMgSi type (Aldrey) are representatives of this group of alloys. The paper presents the results of a study of the temperature dependence of heat capacity, heat transfer coefficient, and thermodynamic functions of an aluminum alloy E-AlMgSi (Aldrey) with bismuth. Research conducted in the "cooling" mode.It was shown that the temperature capacity and the thermodynamic functions of the alloy E-AlMgSi (Aldrey) with bismuth increase with temperature, and the Gibbs energy decreases. Additives of bismuth up to 1 wt.% Reduce heat capacity, heat transfer coefficient, enthalpy and entropy of the initial alloy and increase the value of Gibbs energy.


2020 ◽  
Vol 6 (1) ◽  
pp. 25-30
Author(s):  
Izatullo N. Ganiev ◽  
Firdavs A. Aliev ◽  
Haydar O. Odinazoda ◽  
Ahror M. Safarov ◽  
Jamshed H. Jayloev

Aluminum is a metal having permanently broadening applications. Currently aluminum and its alloys successfully replace conventional metals and alloys in a number of application fields. The wide use of aluminum and its alloys is primarily stipulated by its advantageous properties e.g. low density, high corrosion resistance and electrical conductivity as well as the possibility of applying protective and decorative coatings. In combination with great abundance and relatively low cost which has been almost constant in recent years, this permanently broadens the application range of aluminum. The electrochemical industry is one of the promising application fields of aluminum. The E-AlMgSi type (Aldrey) conductor aluminum alloy has high strength and ductility. This alloy acquires high electrical conductivity upon appropriate heat treatment. Products made from it are used almost exclusively for overhead power lines. This work presents data on the temperature dependence of heat capacity, heat conductivity and thermodynamic functions of the E-AlMgSi (Aldrey) aluminum alloy doped with gallium. The studies have been carried out in "cooling" mode. It has been shown that with an increase in temperature the heat capacity and thermodynamic functions of E-AlMgSi (Aldrey) alloy doped with gallium increase while the Gibbs energy decreases. Gallium doping to 1 wt.% reduces the heat capacity, enthalpy and entropy of the initial alloy and increases the Gibbs energy.


Author(s):  
I. N. Ganiev ◽  
F. A. Aliev ◽  
H. O. Odinazoda ◽  
A. M. Safarov ◽  
J. H. Jayloev

Aluminum — a metal whose scope of application is constantly expanding. At present, aluminum and its alloys in a number of areas successfully displace traditionally used metals and alloys. The widespread use of aluminum and its alloys is due to its properties, among which, first of all, low density, satisfactory corrosion resistance and electrical conductivity, ability to apply protective and decorative coatings should be mentioned. All this, combined with the large reserves of aluminum in the earth’s crust, makes the production and consumption of aluminum very promising. One of the promising areas for the use of aluminum is the electrical industry. Conductive aluminum alloys type E-AlMgSi (Aldrey) are representatives of this group of alloys.One of the promising areas for the use of aluminum is the electrical industry. Conducting aluminum alloys of the E-AlMgSi type (Aldrey) are representatives of this group of alloys. The paper presents the results of a study of the temperature dependence of heat capacity, heat transfer coefficient, and thermodynamic functions of an aluminum alloy E-AlMgSi (Aldrey) with gallium. Research conducted in the “cooling” mode. It is shown that the temperature capacity and thermodynamic functions of the E-AlMgSi alloy (Aldrey) with gallium increase, while the Gibbs energy decreases. Gallium additives up to 1 wt.% Reduce the heat capacity, enthalpy, and entropy of the initial alloy and increase the Gibbs energy.


2018 ◽  
Vol 4 (3) ◽  
pp. 119-124
Author(s):  
Izatullo N. Ganiev ◽  
Suhrob E. Otajonov ◽  
Nasim F. Ibrohimov ◽  
M. Mahmudov

The temperature dependence of the specific heat capacity and change in the thermodynamic functions of strontium-alloyed ultrahigh-purity aluminum base AK1M2 alloy have been studied in “cooling” mode over the 298.15–900 K range. Mathematical models describing the evolution of these properties of the alloys in the abovementioned temperature range with change in alloying addition concentration have been obtained. The heat capacity, enthalpy and entropy of the alloys increase with temperature, decrease with an increase in the alloying addition concentration to 0.5 wt.% and grow with a further increase in the alloying addition concentration. The Gibbs energy of the alloys has an inverse dependence: it decreases with an increase in temperature and grows with an increase in the alloying addition concentration to 0.5 wt.%.


Author(s):  
I. N. Ganiev ◽  
A. P. Abulakov ◽  
J. H. Jayloev ◽  
F. A. Aliev ◽  
A. R. Rashidov

The economic feasibility of using aluminum as a conductive material is explained by the favorable ratio of its cost to the cost of copper. In addition, one should take into account the factor that the cost of aluminum remains practically unchanged for many years. When using conductive aluminum alloys for the manufacture of thin wire, winding wire, etc. Certain difficulties may arise in connection with their insufficient strength and a small number of kinks before fracture. In recent years, aluminum alloys have been developed, which even in a soft state have strength characteristics that allow them to be used as a conductive material. One of the promising areas for the use of aluminum is the electrical industry. Conductive aluminum alloys type E-AlMgSi (aldrey) are representatives of this group of alloys and treats heat-strengthened alloys. They are distinguished by high strength and good ductility. These alloys with appropriate heat treatment acquires high electrical conductivity. The wires made from it are used almost exclusively for overhead power lines.In the work presents the results of the study of the anodic behavior of aluminum alloy E-AlMgSi (aldrey) with tin, in a medium electrolyte 0.03; 0.3 и 3.0% NaCl. A corrosion-electrochemical study of alloys was carried out using the potentiostatic method on a PI-50-1.1 potentiostat at a potential sweep rate of 2 mV/s. It is shown that alloying E-AlMgSi (aldrey) c with tin increases its corrosion resistance by 20%. The main electrochemical potentials of the alloys when doping with tin are shifted to the positive range of values, and from the concentration of sodium chloride in the negative direction of the ordinate axis.


2019 ◽  
Vol 5 (3) ◽  
pp. 127-132
Author(s):  
Izatullo N. Ganiev ◽  
Aslam P. Abulakov ◽  
Jamshed H. Jayloev ◽  
Firdavs A. Aliev ◽  
Akram R. Rashidov

The economic feasibility of using aluminum as a conductive material is explained by the favorable ratio of its cost to the cost of copper. In addition, one should take into account the factor that the cost of aluminum has remained virtually unchanged for many years. When using conductive aluminum alloys for the manufacture of thin wire, winding wire, etc. Certain difficulties may arise in connection with their insufficient strength and a small number of kinks before fracture. In recent years, aluminum alloys have been developed, which even in a soft state have strength characteristics that allow them to be used as a conductive material. One of the promising areas for the use of aluminum is the electrical industry. Conducting aluminum alloys type of the E-AlMgSi (Aldrey) are representatives of this group of alloys and belong to heat-strengthened alloys. They are distinct by high strength and good ductility. These alloys, with appropriate heat treatment, acquire high electrical conductivity. The producing made from it are used almost exclusively for overhead power lines. The paper presents the results of a study of the anodic behavior of aluminum E-AlMgSi (Aldrey) alloy with tin in a medium electrolyte of 0.03; 0.3 and 3.0% NaCl. Corrosion-electrochemical studies of the alloys were carried out by the potentiostatic method in potentiostat PI-50-1.1 at a potential sweep speed of 2 mV/s. It is shown that alloying E-AlMgSi (Aldrey) alloy with tin increases its corrosion resistance by 20%. The main electrochemical potentials of the E-AlMgSi (Aldrey) alloy, when doped with tin, shift to a positive range of values, and from the concentration of sodium chloride in the negative direction of the ordinate.


Author(s):  
I. N. Ganiev ◽  
S. E. Otajonov ◽  
N. F. Ibrohimov ◽  
M. Mahmudov

In the heat «cooling» investigated the temperature dependence of the specific heat capacity and thermodynamic functions doped strontium alloy AK1М2 in the range 298,15—900 K. Mathematical models are obtained that describe the change in these properties of alloys in the temperature range 298.15—900 K, as well as on the concentration of the doping component. It was found that with increasing temperature, specific heat capacity, enthalpy and entropy alloys increase, and the concentration up to 0.5 wt.% of the alloying element decreases. Gibbs energy values have an inverse relationship, i.e., temperature — decreases the content of alloying component — is up to 0.5 wt.% growing.


Author(s):  
I. N. Ganiev ◽  
S. E. Otajonov ◽  
M. Mahmudov ◽  
M. M. Mahmadizida ◽  
V. D. Abulkhaev

It is known that high purity aluminum with a minimum content of impurities is widely used in electronic technology for the manufacture of conductive paths in integrated circuits. Hence the development of new compositions of alloys based on such a metal is a very urgent task. One of the promising alloys based on such a metal is alloy AK1M2 (Al + 1 % Si + 2 % Cu). This alloy was accepted by us as a model alloy and subjected to modification by alkaline earth metals.Heat capacity is the most important characteristic of substances and by its variation with temperature one can determine the type of phase transformation, the Debye temperature, the energy of formation of vacancies, the coefficient of electronic heat capacity, and other properties. In the present work, the heat capacity of the AK1M2 alloy with alkaline earth metals was determined in the “cooling” mode from the known heat capacity of a reference sample from copper. For which, by processing the curves of the cooling rate of samples from the alloy AK1M2 with alkaline earth metals and the standard, polynomials were obtained which describe their cooling rates. Further, by experimentally found values of the cooling rates of the standard and samples from alloys, knowing their masses, the polynomials of the temperature dependence of the heat capacity of the alloys and the standard were established, which are described by a four-term equation. Using the integrals of the specific heat, the models of temperature dependence of the change in enthalpy, entropy and Gibbs energy were established.The dependences obtained show that with an increase in temperature, the heat capacity, enthalpy, and entropy of alloys increase, and the values of Gibbs energy decrease. At the same time, additives of alkaline earth metals do not significantly reduce the heat capacity, enthalpy and entropy of the original alloy AK1M2 and increase the value of Gibbs energy. During the transition from alloys with calcium with barium, the heat capacity of the alloys decreases, which correlates with the heat capacity of pure alkaline earth metals within the subgroup.


2016 ◽  
Vol 838-839 ◽  
pp. 267-271 ◽  
Author(s):  
Shohei Koizumi ◽  
Junya Kobayashi ◽  
Goroh Itoh

Currently liners of high-pressure hydrogen storage container for fuel cell vehicles are manufactured from the 6061 aluminum alloy pipes through spinning at elevated temperatures. Since the surroundings of the containers are reinforced with a large amount of high-cost CFRP, the use of 6066 or 6069 aluminum alloy with higher strength than 6061 is demanded to lower the cost of the container. However, the formability of these aluminum alloys at elevated temperatures has not been elucidated yet. In this study, tensile deformation characteristics of 6066 and 6069 aluminum alloys at temperatures ranging from 25 to 550°C were investigated. The total elongation of 6066 aluminum alloy was higher than that of 6069 aluminum alloy at 450°C. This may be caused by the lower volume fraction of constituent particles. The flow stresses of the two alloys were almost the same, and were decreased with increasing testing temperature. The increase in elongation and decrease in strength observed in the two alloys were attributable to dynamic recovery.


Sign in / Sign up

Export Citation Format

Share Document