winding wire
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 12)

H-INDEX

2
(FIVE YEARS 1)

Author(s):  
А.А. Моисеенко ◽  
С.М. Фёдоров

Представлен метод использования расчетных методик и моделирования магнитных полей в двухмерном пространстве для нахождения высокочастотных потерь в обмотке моточных изделий, таких как дроссель или трансформатор. Была проведена работа по анализу литературы по данной теме, а также поднят вопрос оптимизации и адаптации аналитических формул для случая использования проводников круглого сечения и намотки, имеющей неоднородное распределение слоев в окне сердечника. Был также поднят вопрос об аналитическом нахождении длины обмоточного провода намотки с различным количеством слоев и переменного количества используемых при этом витков. Для проведения автоматизации расчета с помощью формул был написан скрипт, строящий зависимость сопротивления переменному току относительно частоты, используя аналитические формулы. Была написана программа для автоматической постановки начальных условий и граничных значений параметров моделирования, процесса самого моделирования электромагнитных полей, анализа полученных данных, а также формирования массива для построения графика полученной при этом зависимости сопротивления от частоты. В данном методе используется свободно распространяемое программное обеспечение как для математических расчетов, так и моделирования электромагнитных полей. Итогом данной работы стало сравнение полученных результатов, которые показали хорошую сходимость и преемственность этапов данного метода Here we present a method for using computational methods and modeling magnetic fields in two-dimensional space to find high-frequency losses in the winding of winding products, such as a choke or transformer. We analyzed the literature on this topic, as well as the issue of optimization and adaptation of analytical formulas for the case of using round-section conductors and winding having a non-uniform distribution of layers in the core window. We discussed the analytical finding of the length of the winding wire of the winding with a different number of layers and a variable number of turns used in this case. To automate the calculation using formulas, we wrote a script that builds the dependence of the resistance to alternating current relative to the frequency using analytical formulas. In addition, we wrote a program for automatically setting the initial conditions and boundary values of the modeling parameters, the process of modeling electromagnetic fields itself, analyzing the data obtained, as well as forming an array for plotting the resulting dependence of resistance on frequency. This method uses freely distributed software for both mathematical calculations and modeling of electromagnetic fields. The result of this work was a comparison of the results obtained, which showed good convergence and continuity of the stages of this method


Author(s):  
Ulanbator Suleimenov ◽  
Nurlan Zhangabay ◽  
Akmaral Utelbayeva ◽  
Mohamad Nasir Mohamad Ibrahim ◽  
Arman Moldagaliyev ◽  
...  

This paper considers the structural solution for a main above-ground pipeline with a pre-stressed winding, which makes it possible to improve the efficiency of operation and reduce material consumption. The results from studying experimentally the features in the operation of prestressed pipelines under static operating loads are given. It is shown that the radial movements of the wall of a pre-stressed pipeline are constrained by the strained winding, which prevents its deformation. It was revealed that increasing the tension force of the winding wire reduces circular stresses in the pipeline wall by 1.3...1.6 times and increases meridional ones by 1.2...1.4 times. The experimental study into the models of prestressed pipelines with free vertical and horizontal oscillations has established the dependence of frequency characteristics on the operating conditions and pre-stress parameters. It was found that the envelope amplitude on the oscillogram of free attenuated oscillations takes the shape of an exponent, which indicates the damping effect of the pre-stress. Analysis of the change in the dynamic characteristics of the models depending on the pre-stress force has revealed that the frequencies of free oscillations increase by 1.5÷1.6 times while the oscillation decrement decreases by 1.2÷1.25 times. This paper reports the results of studying the influence of pre-stress parameters on the stressed-strained state of the pipeline model under forced horizontal and vertical oscillations. It is shown that the diagrams of circular dynamic stresses and deformations in the models of a prestressed pipeline are smoother compared to similar characteristics of a conventional pipeline tested at the same experimental parameters. The study results have made it possible to quantify the features in the operation of a pre-stressed pipeline under static and dynamic influences, taking into consideration the pre-stress parameters and operating conditions.


Author(s):  
Yudhi Agussationo ◽  

Testing of 3 phase induction motors with a variety of wire diameters. First, find out the ideal wire size on an induction motor. Second, ratio of the power used on an induction motor with different winding wire sizes. Third, to find out the torque produced by an induction motor with different wire winding sizes. Then, The induction motor test was performed by taking the power data used on two motors with a diameter of 0.6 mm and 0.5 mm winding wire, RPM data and torque produced by an induction motor with a diameter of 0.6 mm and 0.5 mm. So, we can get the results the induction motor with a diameter of 0.6 mm wire uses as maximum power of 549.10 Watt or more than the induction motor with a diameter of a wire wound of 0.5 mm which only uses a maximum power of 345.95 Watt, the wire diameter induction motor winding 0.6 mm produces a maximum torque of 746.92 Nm or greater than an induction motor with a diameter of 0.5 mm winding wire which only produces a maximum torque of 383.97 Nm. So, It can be conclude that the more number of revolutions per minute (RPM), the torque produced will be smaller, then, the greater the torque produced, the more power is used.


2020 ◽  
Vol 10 (16) ◽  
pp. 5718 ◽  
Author(s):  
Yunpeng Liu ◽  
Xinye Li ◽  
Huan Li ◽  
Jiaxue Wang ◽  
Xiaozhou Fan

To accurately detect and monitor the internal temperature of an operating power transformer, the distributed optical fiber sensor (DOFS) was creatively applied inside an oil-immersed 35 kV transformer through high integration with the winding wire. On the former basis, the power transformer prototype with a completely global internal temperature sensing capability was successfully developed and it was also qualified for power grid operation through the ex-factory type tests. The internal spatially continuous temperature distribution of the operating transformer was then revealed through a heat-run test and the numerical simulation was also applied for further analysis. Hotspots of windings were continuously located and monitored (emerging at about 89%/90% height of low/high voltage winding), which were furtherly compared with the IEC calculation results. This new nondestructive internal sensing method shows a broad application prospect in the electrical equipment field. Also, the revelation of transformer internal distributed temperature can offer a solid reference for both researchers and field operation staff.


2020 ◽  
Vol 12 (2) ◽  
pp. 34-43
Author(s):  
Muhammad Naim

A 1-phase 4-pole starting capacitor induction motor which is used as an activator of the table drilling machine has a more complicated construction because it has a  centrifugal switch which is connected in series with the capacitor for its initial start and a high rotational speed of the stator field, which is 1500 rpm. While a 3-phase 6-pole induction motor has a much simpler construction because it does not require a centrifugal switch and a capacitor for its initial start with a low rotational speed of the stator field, which is 1000 rpm. This study discusses the effect of modifying the stator winding in a 1-phase 4-pole starting capacitor induction motor on the table drilling machine into a stator winding of 3-phase 6-pole induction motor on the rotation of the rotor. Modifications are carried out on the stator winding of a 1-phase induction motor by changing the number of phases, number of poles, type of winding, wire diameter and number of windings per groove. Modifications are carried out on the windings to obtain a 3-phase 6-pole 24-groove induction motor with 200 windings per groove, a wire diameter of 0.5 mm, and a winding type of spiral double layer. In our trials without a load on the induction motor the rotor rotation decreased by 33.71% from 1498 rpm to 993 rpm, and with a load decreased by 36% from 1450 rpm to 927 rpm.


Author(s):  
А.В. Белый

В статье приводится описание разработки усовершенствованной системы регулирования аппарата укладки проволоки на стане тонкого волочения. Модернизация системы регулирования направлена на устранение недопустимого режима работы стана, когда намотка проволоки на катушку осуществляется без ее равномерной укладки, вследствие выхода из строя механизма реверсирования укладчика. Разработана функциональная схема системы защиты от остановки укладчика в процессе намотки проволоки на катушку. Реализация данной схемы выполнена на базе существующих систем регулирования преобразователей частоты в электроприводах аппаратов намотки и укладки. Приведено описание работы защиты от остановки укладчика. The article describes the development of an improved system for regulating the apparatus for laying wire on a thin drawing mill. The modernization of the control system is aimed at eliminating the unacceptable mode of operation of the mill, when the wire is wound on a coil without evenly stacking it, due to failure of the stacker reversal mechanism. A functional diagram of the stacker stop protection system was developed during the process of winding wire onto a spool. The implementation of this scheme is based on existing systems for regulating frequency converters in electric drives of winding and stacking machines. The description of the operation of the protection against stopping the stacker is given.


Author(s):  
I. N. Ganiev ◽  
A. P. Abulakov ◽  
J. H. Jayloev ◽  
F. A. Aliev ◽  
A. R. Rashidov

The economic feasibility of using aluminum as a conductive material is explained by the favorable ratio of its cost to the cost of copper. In addition, one should take into account the factor that the cost of aluminum remains practically unchanged for many years. When using conductive aluminum alloys for the manufacture of thin wire, winding wire, etc. Certain difficulties may arise in connection with their insufficient strength and a small number of kinks before fracture. In recent years, aluminum alloys have been developed, which even in a soft state have strength characteristics that allow them to be used as a conductive material. One of the promising areas for the use of aluminum is the electrical industry. Conductive aluminum alloys type E-AlMgSi (aldrey) are representatives of this group of alloys and treats heat-strengthened alloys. They are distinguished by high strength and good ductility. These alloys with appropriate heat treatment acquires high electrical conductivity. The wires made from it are used almost exclusively for overhead power lines.In the work presents the results of the study of the anodic behavior of aluminum alloy E-AlMgSi (aldrey) with tin, in a medium electrolyte 0.03; 0.3 и 3.0% NaCl. A corrosion-electrochemical study of alloys was carried out using the potentiostatic method on a PI-50-1.1 potentiostat at a potential sweep rate of 2 mV/s. It is shown that alloying E-AlMgSi (aldrey) c with tin increases its corrosion resistance by 20%. The main electrochemical potentials of the alloys when doping with tin are shifted to the positive range of values, and from the concentration of sodium chloride in the negative direction of the ordinate axis.


2019 ◽  
Vol 5 (3) ◽  
pp. 127-132
Author(s):  
Izatullo N. Ganiev ◽  
Aslam P. Abulakov ◽  
Jamshed H. Jayloev ◽  
Firdavs A. Aliev ◽  
Akram R. Rashidov

The economic feasibility of using aluminum as a conductive material is explained by the favorable ratio of its cost to the cost of copper. In addition, one should take into account the factor that the cost of aluminum has remained virtually unchanged for many years. When using conductive aluminum alloys for the manufacture of thin wire, winding wire, etc. Certain difficulties may arise in connection with their insufficient strength and a small number of kinks before fracture. In recent years, aluminum alloys have been developed, which even in a soft state have strength characteristics that allow them to be used as a conductive material. One of the promising areas for the use of aluminum is the electrical industry. Conducting aluminum alloys type of the E-AlMgSi (Aldrey) are representatives of this group of alloys and belong to heat-strengthened alloys. They are distinct by high strength and good ductility. These alloys, with appropriate heat treatment, acquire high electrical conductivity. The producing made from it are used almost exclusively for overhead power lines. The paper presents the results of a study of the anodic behavior of aluminum E-AlMgSi (Aldrey) alloy with tin in a medium electrolyte of 0.03; 0.3 and 3.0% NaCl. Corrosion-electrochemical studies of the alloys were carried out by the potentiostatic method in potentiostat PI-50-1.1 at a potential sweep speed of 2 mV/s. It is shown that alloying E-AlMgSi (Aldrey) alloy with tin increases its corrosion resistance by 20%. The main electrochemical potentials of the E-AlMgSi (Aldrey) alloy, when doped with tin, shift to a positive range of values, and from the concentration of sodium chloride in the negative direction of the ordinate.


Sign in / Sign up

Export Citation Format

Share Document