scholarly journals DNA barcoding of Zygaenidae (Lepidoptera): results and perspectives

2019 ◽  
Vol 42 (2) ◽  
pp. 137-150
Author(s):  
Konstantin A. Efetov ◽  
Anna V. Kirsanova ◽  
Zoya S. Lazareva ◽  
Ekaterina V. Parshkova ◽  
Gerhard M. Tarmann ◽  
...  

The present study provides a DNA barcode library for the world Zygaenidae (Lepidoptera). This study reports 1031 sequence data of the COI gene DNA barcodes for more than 240 species in four of the five subfamilies of the family Zygaenidae. This is about 20% of the world Zygaenidae species. Our results demonstrate the specificity of the COI gene sequences at the species level in most of the studied Zygaenidae and agree with already established taxonomic opinions. The study confirms the effectiveness of DNA barcoding as a tool for determination of most Zygaenidae species. However, some of the results are contradictory. Some cases of shared barcodes have been found, as well as cases of deep intraspecific sequence divergence in species that are well separated by morphological and biological characters. These cases are discussed in detail. Overall, when combined with morphological and biochemical data, as well as biological and ecological observations, DNA barcoding results can be a useful support for taxonomic decisions.

2020 ◽  
Vol 42 (4) ◽  
Author(s):  
Nguyen Thi Dinh

DNA barcoding is a useful tool in identifying species, biodiversity assessment, and revealing phylogenetic relationships of living organisms in the world. However, the DNA barcode data for leaf beetles in Vietnam is lacking. In this study, sixteen DNA sequences of 658 bp of COI gene from nine species (five genera; three subfamilies) of Chrysomelidae in Vietnam were (obtained). Intra- and inter-specific diversities, and phylogenetic relationships of these species were analyzed. 


Genome ◽  
2017 ◽  
Vol 60 (4) ◽  
pp. 348-357 ◽  
Author(s):  
Luis M. Hernández-Triana ◽  
Fernanda Montes De Oca ◽  
Sean W.J. Prosser ◽  
Paul D.N. Hebert ◽  
T. Ryan Gregory ◽  
...  

In this paper, the utility of a partial sequence of the COI gene, the DNA barcoding region, for the identification of species of black flies in the austral region was assessed. Twenty-eight morphospecies were analyzed: eight of the genus Austrosimulium (four species in the subgenus Austrosimulium s. str., three species in the subgenus Novaustrosimulium, and one species unassigned to subgenus), two of the genus Cnesia, eight of Gigantodax, three of Paracnephia, one of Paraustrosimulium, and six of Simulium (subgenera Morops, Nevermannia, and Pternaspatha). The neighbour-joining tree derived from the DNA barcode sequences grouped most specimens according to species or species groups recognized by morphotaxonomic studies. Intraspecific sequence divergences within morphologically distinct species ranged from 0% to 1.8%, while higher divergences (2%–4.2%) in certain species suggested the presence of cryptic diversity. The existence of well-defined groups within S. simile revealed the likely inclusion of cryptic diversity. DNA barcodes also showed that specimens identified as C. dissimilis, C. nr. pussilla, and C. ornata might be conspecific, suggesting possible synonymy. DNA barcoding combined with a sound morphotaxonomic framework would provide an effective approach for the identification of black flies in the region.


Crustaceana ◽  
2015 ◽  
Vol 88 (12-14) ◽  
pp. 1323-1338 ◽  
Author(s):  
Lucía Montoliu ◽  
María R. Miracle ◽  
Manuel Elías-Gutiérrez

To date, little attention has been paid to analyses of copepods as exotic species. The genusMesocyclops, a freshwater cyclopoid, has a worldwide distribution, but individual species within the genus have a quite restricted geographical range.Mesocyclops pehpeiensisHu, 1943 is a Central-East Asian species, rarely found outside of this area, and when it appears should be considered as non-native. Based on morphology and DNA barcode analyses, using the COI gene, we confirmed records ofM. pehpeiensisin two ponds in Mexico and in a rice paddy near Valencia, Spain. The morphology of this species, based on morphometric analyses, was found to be variable, but DNA barcoding confirmed the same identity for specimens from two continents. The extremely low COI genetic divergence among these disjunct populations ofM. pehpeiensisstrongly evidences anthropogenic translocations. DNA barcoding can be a fast and useful analytical tool to accurately identify exotic species across the world.


2019 ◽  
Vol 18 (4) ◽  
pp. 443-451
Author(s):  
Nguyen Manh Linh ◽  
Pham The Thu ◽  
Nguyen Van Quan ◽  
Pham Van Chien ◽  
Dao Huong Ly ◽  
...  

The family Gobiidae is a relatively high abundance family of coastal fish with about 2000 species in 210 genera described. In Vietnam, the study on Gobiidae is very complex due to the large number of species, small size and high morphological variation which makes difficulties in identification and classification. In this study, the DNA barcoding technique has been used through mitochondrial cytochrome oxidase I (COI) gene to classify 30 specimens of Gobiidae from three coastal areas (North, Central and South) in Vietnam to evaluate the effectiveness compared to the morphological classification method. Results showed that 26 species belonging to 21 genera were determined by the COI barcode while 19 species (17 genera) were determined when using morphological method. Mahidolia mystacina was new recorded in Vietnam. The DNA barcodes of COI gene developed in this study could be useful for estimating phylogenetic diversity as well as other studies of gobiids in terms of conservation, management and utilization of fisheries resources in Vietnam. In addition, the results showed the high potentiality in using COI barcode to identify marine fish.


Author(s):  
J.-C. Huang ◽  
X.-Y. Li ◽  
Y.-P. Li ◽  
R.-S. Zhang ◽  
D.-B. Chen ◽  
...  

Samia ricini (Wm. Jones) and Samia cynthia (Drury) (Lepidoptera: Saturniidae) have been used as traditional sources of food as well as silk-producing insects. However, the phylogenetic relationship between the two silkworms remains to be addressed. In this study, the mitochondrial cytochrome c oxidase subunit 1 (COI) gene sequences corresponding to DNA barcodes from 13 Samia species were analysed, and a DNA barcode-based phylogenetic framework for these Samia species was provided. Phylogenetic analysis showed that multiple individuals of a species could be clustered together. Our analysis revealed a close relationship among Samia yayukae Paukstadt, Peigler and Paukstadt, Samia abrerai Naumann and Peigler, Samia kohlli Naumann and Peigler, Samia naessigi Naumann and Peigler, Samia naumanni Paukstadt, Peigler and Paukstadt, and Samia kalimantanensis Paukstadt and Paukstadt. The mixed clustering relationship and low Kimura-2-parameter (K2P) genetic distance (0.006) between individuals of S. ricini and Samia canningi (Hutton) indicated that the cultivated silkworm S. ricini was derived from the non-cultivated silkworm S. canningi. The remote phylogenetic relationship and high K2P genetic distance (0.039) indicated that S. ricini and S. cynthia are distinct species, thus providing solid molecular evidence that they had entirely independent origins. The relationships between S. kalimantanensis and S. naumanni and between S. cynthia and Samia wangi Naumann and Peigler, as well as the potential cryptic species within S. abrerai were also discussed. This is the first study to assess the DNA barcodes of the genus Samia, which supplements the knowledge of species identification and provides the first molecular phylogenetic framework for Samia species.


Acarologia ◽  
2021 ◽  
Vol 61 (3) ◽  
pp. 602-613
Author(s):  
Lucia Montes-Ortiz ◽  
Tom Goldschmidt ◽  
Lourdes Vásquez-Yeomans ◽  
Manuel Elías-Gutiérrez

A new planktonic species of the marine water mites of the family Pontarachnidae Koenike, 1910 is described from Corozal Bay, an estuarine system in Belize. The morphological description includes Scanning Electronic Microscope (SEM) images and is augmented by an analysis of DNA cytochrome c oxidase I (COI) sequences, the DNA barcode, used for the first time for a species description in this group.


2011 ◽  
Vol 63 (4) ◽  
pp. 1225-1234 ◽  
Author(s):  
Reyhaneh Darsouei ◽  
Javad Karimi ◽  
Mehdi Modarres-Awal

DNA barcoding is a modern method for the identification of different species, including insects. Among animals, the major emphasis of DNA barcoding is on insects. Due to this global trend we addressed this approach for surveying a group of insects. The parasitic wasps (including primary and hyperparasitoids) of pome fruit orchard aphids were collected from Iran-Mashhad during 2009-2010. Preliminary identification of this group was performed by using morphological and morphometric characters and SEM. The COI gene in the specimens was amplified and sequenced. In this survey, Aphidius matricariae, Binodoxys angelicae, Diaeretiella rapae, Ephedrus persicae, Lysiphlebus fabarum and Praon volucre parasitoids and Alloxysta sp., Asaphes suspensus, Dendrocerus carpenteri, Pachyneuron aphidis, Syrphophagus aphidivorus hyperparasitoids were studied. Based on intra-interspecies distances and phylogenetic analysis using NJ, all species possess diagnostic barcode sequences. The results of this study show that the COI sequence could be useful in identification study of this group of insects. Here we have provided the first GenBank data for the COI gene of the above-mentioned hyperparasitoids as well as an initial attempt toward preparing DNA barcodes for Iranian parasitoid and hyperparasitoid aphids.


2018 ◽  
Author(s):  
Kam-Cheng Yeong ◽  
Haruo Takizawa ◽  
Thor-Seng Liew

Sabah, northern Borneo is one of the world’s most well-recognized biodiversity hotspots famous for the incredible diversity of its flora and fauna. Plenty of studies of leaf beetle fauna from this region have been conducted over the past 30 years. Yet, our knowledge of the leaf beetle fauna from island habitats remains scarce despite Sabah having the highest number of islands in Malaysia (ca. 500 islands). In this study, we collected leaf beetle fauna from 13 islands off the west coast of Sabah between January 2016 and March 2017. All specimens were identified to species level. Species names were assigned when the specimens fitted the description of species in the literature and morpho-species were assigned when the species names could not be determined. In addition, DNA barcodes – mitochondarial COI gene – of the species were sequenced. A total of 68 species from 31 genera and 5 subfamilies were collected with 12 species name being determined. From the data it was established that Pulau Gaya has the highest species richness (42 species), followed by Pulau Tiga (22 species) and Pulau Sapangar (18 species). Furthermore, a total of 64 Barcode Index Numbers consisting of 101 DNA barcodes were obtained from 60 leaf beetle species. The mean intraspecific and interspecific distances were determined as 0.77 % and 16.11 %, respectively. In addition, DNA barcoding also reveals phenotypic variation in leaf beetle species, particularly in the case of the subfamily Galerucinae. This study provides baseline knowledge and information about the DNA barcodes of leaf beetle species on Sabah’s island habitats for use in future studies.


DNA Barcodes ◽  
2015 ◽  
Vol 3 (1) ◽  
Author(s):  
Lauren M. Overdyk ◽  
Heather E. Braid ◽  
Stephen S. Crawford ◽  
Robert H. Hanner

AbstractDNA barcoding is a useful tool for both species identification and discovery, but the latter requires denser sampling than typically used in barcode studies. Lake Whitefish (Coregonus clupeaformis) is a valuable species, fished traditionally, commercially, and recreationally in Lake Huron. Based on the natural geographic and bathymetric separation of the three major basins in Lake Huron, the potential separation of Lake Whitefish within these basins, and the variation among life history (early and late spawning), we predicted that Lake Huron might harbour cryptic lineages of Lake Whitefish at the basin level. To test this prediction, DNA barcodes of the mitochondrial 5’ cytochrome c oxidase subunit I (COI) gene sequences were recovered from spawning phase Lake Whitefish (n = 5 per site), which were collected from sites (n = 28) around Lake Huron during Fall 2012. These sequences, combined with other publically available DNA barcodes from the Barcode of Life Data System (BOLD), revealed twelve unique haplotypes across North America, with seven unique to Lake Huron. The dominant haplotype was found throughout Lake Huron and east to the St. Lawrence River. No deep divergences were revealed. This comprehensive lake-wide sampling effort offers a new perspective on C. clupeaformis, and can provide insight for environmental assessments and fisheries management.


Zootaxa ◽  
2019 ◽  
Vol 4674 (4) ◽  
pp. 426-438
Author(s):  
CHENGLONG CAO ◽  
SIYAO HUANG ◽  
YONGQIANG XU ◽  
HAOMIN WU ◽  
TIANPENG CHEN ◽  
...  

The specimens of the family Hesperiidae collected from Tibet during 2016–2018 are identified using morphology. COI sequences of 76 individuals are newly obtained. The result of our morphological study is congruent with COI gene analyses. Maximum likehood (ML) and Bayesina inferences (BI) analyses reveal that individuals identified morphologically as the same species cluster cohesively. The minimum interspecific genetic distance is 1.7% between Halpe aucma and H. filda, and the genetic distance between conspecific individuals ranged from 0 to 0.2% for the genus Halpe. A total of 51 species are recognized, and six of them, Celaenorrhinus consanguineus Leech, 1891, Barca bicolor (Oberthür, 1896), Aeromachus propinquus Alphéraky, 1897, Pedesta bivitta (Oberthür, 1886), Baoris penicillata chapmani Evans, 1937, and Ochlodes brahma Moore, 1878, are reported from Tibet for the first time, and the last species is new to China. 


Sign in / Sign up

Export Citation Format

Share Document