scholarly journals New morphological and molecular data for Xystretrum solidum (Gorgoderidae, Gorgoderinae) from Sphoeroides testudineus (Tetraodontiformes, Tetraodontidae) in Mexican waters

ZooKeys ◽  
2020 ◽  
Vol 925 ◽  
pp. 141-161
Author(s):  
Andrés Martínez-Aquino ◽  
Jhonny Geovanny García-Teh ◽  
Fadia Sara Ceccarelli ◽  
Rogelio Aguilar-Aguilar ◽  
Victor Manuel Vidal-Martinez ◽  
...  

Adults of trematodes in the genus Xystretrum Linton, 1910 (Gorgoderidae, Gorgoderinae) are parasites found exclusively in the urinary bladders of tetraodontiform fishes. However, limited and unclear morphological data were used to describe the type species, X. solidum Linton, 1910. Here, we present the first detailed morphological information for a member of Xystretrum. Morphological characters were described using light and scanning electron microscopy (SEM) of Xystretrum specimens from Sphoeroides testudineus (Linnaeus) (Tetraodontiformes, Tetraodontidae), collected at six localities off the northern Yucatan Peninsula coast of the Gulf of Mexico. We also compared sequence fragments of the 28S (region D1–D3) ribosomal DNA and mitochondrial Cytochrome c oxidase subunit 1 (COI) gene with those available for other gorgoderine taxa. We assigned these Xystretrum specimens to X. solidum, despite the incompleteness of published descriptions. The data provide a foundation for future work to validate the identities of X. solidum, X. papillosum Linton, 1910 and X. pulchrum (Travassos, 1920) with new collections from the type localities and hosts. Comparisons of 28S and COI regions described here also provide an opportunity to evaluate the monophyletic status of Xystretrum.

2016 ◽  
Vol 75 (1) ◽  
pp. 60-66
Author(s):  
Candan Aykurt ◽  
İsmail G. Deniz ◽  
Duygu Sari ◽  
Mecit Vural ◽  
Hüseyin Sümbül

Abstract This study evaluates Ornithogalum brevipedicellatum, which was previously accepted as a synonym of O. oligophyllum, as a separate distinct species and discusses the similarities and differences between O. brevipedicellatum and its related species (O. oligophyllum and O. pamphylicum). Similarities and differences among these species were identifi ed by morphological and molecular studies. The leaf morphology and inflorescence of O. brevipedicellatum and O. pamphylicum are similar to each other, and in terms of these features, they show differences from O. oligophyllum. Some diagnostic characteristics are quite different in O. brevipedicellatum and O. pamphylicum, such as the size of tepals, length of fruiting pedicels and style. Morphological data were supported by the results obtained from molecular studies. According to a dendrogram obtained by molecular studies, O. brevipedicellatum and O. pamphylicum are similar. O. oligophyllum is more closely related to O. pyrenaicum used as an out-group. Additionally, the seeds of O. brevipedicellatum were examined with the use of scanning electron microscopy


Zootaxa ◽  
2004 ◽  
Vol 680 (1) ◽  
pp. 1 ◽  
Author(s):  
ARNE NYGREN

Autolytinae is revised based on available types, and newly collected specimens. Out of 170 nominal species, 18 are considered as incertae sedis, 43 are regarded as junior synonyms, and 25 are referred to as nomina dubia. The relationships of Autolytinae is assessed from 51 morphological characters and 211 states for 76 ingroup-taxa, and 460 molecular characters from mitochondrial 16S rDNA and nuclear 18S rDNA for 31 ingroup-taxa; outgroups include 12 non-autolytine syllid polychaetes. Two analyses are provided, one including morphological data only, and one with combined morphological and molecular data sets. The resulting strict consensus tree from the combined data is chosen for a reclassification. Three main clades are identified: Procerini trib. n., Autolytini Grube, 1850, and Epigamia gen. n. Proceraea Ehlers, 1864 and Myrianida Milne Edwards, 1845 are referred to as nomen protectum, while Scolopendra Slabber, 1781, Podonereis Blainville, 1818, Amytis Savigny, 1822, Polynice Savigny, 1822, and Nereisyllis Blainville, 1828 are considered


Zootaxa ◽  
2010 ◽  
Vol 2493 (1) ◽  
pp. 16 ◽  
Author(s):  
IVO DE SENA OLIVEIRA ◽  
ALFREDO HANNEMANN WIELOCH ◽  
GEORG MAYER

Based on the supposed quadrangular shape of the basal pieces of dorsal primary papillae, several species of the “Caribbean group” of the neotropical Peripatidae, including Macroperipatus acacioi and M. machadoi, were assigned to Macroperipatus. So far, the quadrangular shape of dermal papillae was confirmed only for M. torquatus, the type species of the genus. Previous observations revealed that the putatively quadrangular shape reported from other species of the “Caribbean group” might be a fixation artefact. Hence, detailed reinvestigations of all putative Macroperipatus species are required to clarify their taxonomy. In the present study, two species of the “Caribbean group”, M. acacioi and M. machadoi, are analyzed and redescribed, based on type material and topotype specimens collected at the corresponding type localities. The original descriptions of both species are complemented with data obtained from scanning electron microscopy, in addition to conventional morphological methods. The quadrangular bases of primary papillae are shown to be absent from M. acacioi and M. machadoi, thus suggesting that these two species are not closely related to M. torquatus. The new data instead suggest that these two species are representatives of Epiperipatus: E. acacioi comb. nov. and E. machadoi comb. nov.. The present study highlights the use of scanning electron microscopy for clarifying the taxonomy and phylogeny of the neotropical Peripatidae. It also reveals gaps in taxon sampling and problems regarding the ambiguous terminology of morphological characters used for describing the anatomy of peripatids. An attempt is made towards a consistent terminology for species (re)descriptions and studies of onychophoran anatomy and phylogeny.


ZooKeys ◽  
2020 ◽  
Vol 971 ◽  
pp. 1-15 ◽  
Author(s):  
Ilgoo Kang ◽  
Khuat Dang Long ◽  
Michael J. Sharkey ◽  
James B. Whitfield ◽  
Nathan P. Lord

For the first time in 21 years, a new genus of cardiochiline braconid wasp, Orientocardiochiles Kang & Long, gen. nov. (type species Orientocardiochiles joeburrowi Kang, sp. nov.), is discovered and described. This genus represents the ninth genus in the Oriental region. Two new species (O. joeburrowi Kang, sp. nov. and O. nigrofasciatus Long, sp. nov.) are described and illustrated, and a key to species of the genus, with detailed images, is added. Diagnostic characters of the new genus are analyzed and compared with several other cardiochiline genera to allow the genus to key out properly using an existing generic treatment. The scientific names validated by this paper and morphological data obtained from this project will be utilized and tested in the upcoming genus-level revision of the subfamily based on combined morphological and molecular data.


2021 ◽  
Author(s):  
Robin M. D. Beck ◽  
Robert Voss ◽  
Sharon Jansa

The current literature on marsupial phylogenetics includes numerous studies based on analyses of morphological data with relatively limited sampling of Recent and fossil taxa, and many studies based on analyses of molecular data that include a dense sampling of Recent taxa, but relatively few that combine both data types. Another dichotomy in the marsupial phylogenetic literature is between studies that focus on New World taxa, others that focus on Sahulian taxa. To date, there has been no attempt to assess the phylogenetic relationships of the global marsupial fauna, based on combined analyses of morphology and molecular sequences, for a dense sampling of Recent and fossil taxa. For this report, we compiled morphological and molecular data from an unprecedented number of Recent and fossil marsupials. Our morphological data consist of 180 craniodental characters that we scored for 97 species representing every currently recognized Recent genus, 42 additional ingroup (crown-clade marsupial) taxa represented by well-preserved fossils, and 5 outgroups (non-marsupial metatherians). Our molecular data comprise 24.5 kb of DNA sequences from whole-mitochondrial genomes and six nuclear loci (APOB, BRCA1, GHR, RAG1, RBP3 and VWF) for 97 marsupial terminals (the same Recent taxa scored for craniodental morphology) and several placental and monotreme outgroups. The results of separate and combined analyses of these data using a wide range of phylogenetic methods support many currently accepted hypotheses of ingroup (marsupial) relationships, but they also underscore the difficulty of placing fossils with key missing data (e.g., †Evolestes), and the unique difficulty of placing others that exhibit mosaics of plesiomorphic and autapomorphic traits (e.g., †Yalkaparidon). Unique contributions of our study are (1) critical discussions and illustrations of marsupial craniodental morphology, including descriptions and illustrations of some features never previously coded for phylogenetic analysis; (2) critical assessments of relative support for many suprageneric clades; (3) estimates of divergence times derived from tip-and-node dating based on uniquely taxon-dense analyses; and (4) a revised, higher-order classification of marsupials accompanied by lists of supporting craniodental synapomorphies. Far from the last word on these topics, this report lays the foundation for future research that may be enabled by the discovery of new fossil taxa, better-preserved material of previously described taxa, novel morphological characters, and improved methods of phylogenetic analysis.


Zootaxa ◽  
2012 ◽  
Vol 3421 (1) ◽  
pp. 1 ◽  
Author(s):  
JURE JUGOVIC ◽  
BRANKO JALŽIĆ ◽  
SIMONA PREVORČNIK ◽  
BORIS SKET

Within the Dinaric genus Troglocaris cave shrimps from the subgenus Troglocaris s. str. (Dormitzer, 1853) (Crustacea:Decapoda: Atyidae), have the widest distribution area. The recent molecular analyses have revealed significant, crypticdiversity in the subgenus. The aim of the subsequent detailed morphometric analyses was the provision of the appropriatediagnosable characters for the discovered lineages, i.e. taking care of their taxonomical visibility. We herein designate aneotype and provide a detailed description for the polytipic type species of the genus T. (T.) anophthalmus (Kollar, 1848), toenable its morphological distinction from the erroneously described T. (T.) planinensis Birštejn, 1948. Considering acombination of morphological, geographical and molecular data, we describe four new subspecies: T. (T.) a. ocellata ssp. nov.,T. (T.) a. periadriatica ssp. nov., T. (T.) a. legovici ssp. nov. and T. (T.) a. sontica ssp. nov., apart from the extant T. (T.) a.intermedia Babić, 1922. Due to a considerable morphological variability and no easily observable diagnostic morphological characters, the GenBank accession numbers for the COI gene are added in all mentioned taxa.


2021 ◽  
Author(s):  
E. J. Thompson ◽  
Melodina Fabillo

The taxonomy of Neurachninane has been unstable, with its member genera consisting of Ancistrachne, Calyptochloa, Cleistochloa, Dimorphochloa, Neurachne, Paraneurachne and Thyridolepis, changing since its original circumscription that comprised only the latter three genera. Recent studies on the phylogeny of Neurachninae have focused primarily on molecular data. We analysed the phylogeny of Neurachninae on the basis of molecular data from seven molecular loci (plastid markers: matK, ndhF, rbcL, rpl16, rpoC2 and trnLF, and ribosomal internal transcribed spacer, ITS) and morphological data from 104 morphological characters, including new taxonomically informative micromorphology of upper paleas. We devised an impact assessment scoring (IAS) protocol to aid selection of a tree for inferring the phylogeny of Neurachninae. Combining morphological and molecular data resulted in a well resolved phylogeny with the highest IAS value. Our findings support reinstatement of subtribe Neurachninae in its original sense, Neurachne muelleri and Dimorphochloa rigida. We show that Ancistrachne, Cleistochloa and Dimorphochloa are not monophyletic and Ancistrachne maidenii, Calyptochloa, Cleistochloa and Dimorphochloa form a new group, the cleistogamy group, united by having unique morphology associated with reproductive dimorphism.


Phytotaxa ◽  
2021 ◽  
Vol 478 (2) ◽  
pp. 179-200
Author(s):  
SHABIR A. RATHER ◽  
WANG SHU ◽  
MAYANK DHAR DWIVEDI ◽  
CHANG ZHAOYANG

In this study, we explored the evolutionary history and taxonomic treatment of the Caragana opulens complex taking information from morphological and molecular data. The complex consists of three species, C. opulens, C. licentiana and C. kansuensis. Moreover, the morphological characters currently used to differentiate the species present in the complex have been found insignificant and inconsistent and do not help diagnose the species. For the present study, we investigated its range and sampled 139 accessions from the different populations of the genus Caragana and 17 accessions of the complex. DNA sequence data from one nrDNA ITS and one cpDNA trnH-psbA loci were sequenced and analyzed using Maximum Likelihood and Bayesian methods. The resulting phylogenies were congruent in topologies. Based on morphological and molecular data, it is concluded that all three species of the complex are one of the same with significant morphological variations. Hence C. opulens is accepted as the correct name along with C. licentiana and C. kansuensis as synonyms.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jose Barba-Montoya ◽  
Qiqing Tao ◽  
Sudhir Kumar

Abstract Background Matrices of morphological characters are frequently used for dating species divergence times in systematics. In some studies, morphological and molecular character data from living taxa are combined, whereas others use morphological characters from extinct taxa as well. We investigated whether morphological data produce time estimates that are concordant with molecular data. If true, it will justify the use of morphological characters alongside molecular data in divergence time inference. Results We systematically analyzed three empirical datasets from different species groups to test the concordance of species divergence dates inferred using molecular and discrete morphological data from extant taxa as test cases. We found a high correlation between their divergence time estimates, despite a poor linear relationship between branch lengths for morphological and molecular data mapped onto the same phylogeny. This was because node-to-tip distances showed a much higher correlation than branch lengths due to an averaging effect over multiple branches. We found that nodes with a large number of taxa often benefit from such averaging. However, considerable discordance between time estimates from molecules and morphology may still occur as  some intermediate nodes may show large time differences between these two types of data. Conclusions Our findings suggest that node- and tip-calibration approaches may be better suited for nodes with many taxa. Nevertheless, we highlight the importance of evaluating the concordance of intrinsic time structure in morphological and molecular data before any dating analysis using combined datasets.


2021 ◽  
Author(s):  
Jose Barba-Montoya ◽  
Qiqing Tao ◽  
Sudhir Kumar

Abstract Background: Matrices of morphological characters are frequently used for dating species divergence times in systematics. In some studies, morphological and molecular character data from living taxa are combined, whereas others use morphological characters from extinct taxa as well. We investigated whether morphological data produce time estimates that are concordant with molecular data. If true, it will justify the use of morphological characters alongside molecular data in divergence time inference.Results: We systematically analyzed three empirical datasets from different species groups to test the concordance of species divergence dates inferred using molecular and discrete morphological data from extant taxa as test cases. We found a high correlation between their divergence time estimates, despite a poor linear relationship between branch lengths for morphological and molecular data mapped onto the same phylogeny. This was because node-to-tip distances showed a much higher correlation than branch lengths due to an averaging effect over multiple branches. We found that nodes with a large number of taxa often benefit from such averaging. However, considerable discordance between time estimates from molecules and morphology may still occur because some deeper nodes show a large time differences between these two types of data.Conclusions: Our findings suggest that node- and tip-calibration approaches may be better suited for nodes with many taxa. Nevertheless, we highlight the importance of evaluating the concordance of time structure in morphological and molecular data before any dating analysis using combined datasets.


Sign in / Sign up

Export Citation Format

Share Document