Differential Gene Expression Profiles May Differentiate Responder and Nonresponder Patients with Rheumatoid Arthritis for Methotrexate (MTX) Monotherapy and MTX plus Tumor Necrosis Factor Inhibitor Combined Therapy

2012 ◽  
Vol 39 (8) ◽  
pp. 1524-1532 ◽  
Author(s):  
RENÊ DONIZETI RIBEIRO OLIVEIRA ◽  
VANESSA FONTANA ◽  
CRISTINA MORAES JUNTA ◽  
MÁRCIA MARIA CHIQUITELLI MARQUES ◽  
CLÁUDIA MACEDO ◽  
...  

Objective.We aimed to evaluate whether the differential gene expression profiles of patients with rheumatoid arthritis (RA) could distinguish responders from nonresponders to methotrexate (MTX) and, in the case of MTX nonresponders, responsiveness to MTX plus anti-tumor necrosis factor-α (anti-TNF) combined therapy.Methods.We evaluated 25 patients with RA taking MTX 15–20 mg/week as a monotherapy (8 responders and 17 nonresponders). All MTX nonresponders received infliximab and were reassessed after 20 weeks to evaluate their anti-TNF responsiveness using the European League Against Rheumatism response criteria. A differential gene expression analysis from peripheral blood mononuclear cells was performed in terms of hierarchical gene clustering, and an evaluation of differentially expressed genes was performed using the significance analysis of microarrays program.Results.Hierarchical gene expression clustering discriminated MTX responders from nonresponders, and MTX plus anti-TNF responders from nonresponders. The evaluation of only highly modulated genes (fold change > 1.3 or < 0.7) yielded 5 induced (4 antiapoptotic and CCL4) and 4 repressed (4 proapoptotic) genes in MTX nonresponders compared to responders. In MTX plus anti-TNF non-responders, the CCL4, CD83, and BCL2A1 genes were induced in relation to responders.Conclusion.Study of the gene expression profiles of RA peripheral blood cells permitted differentiation of responders from nonresponders to MTX and anti-TNF. Several candidate genes in MTX non-responders (CCL4, HTRA2, PRKCD, BCL2A1, CAV1, TNIP1, CASP8AP2, MXD1, and BTG2) and 3 genes in MTX plus anti-TNF nonresponders (CCL4, CD83, and BCL2A1) were identified for further study.

2016 ◽  
Vol 6 (1_suppl) ◽  
pp. s-0036-1582635-s-0036-1582635 ◽  
Author(s):  
Sibylle Grad ◽  
Ying Zhang ◽  
Olga Rozhnova ◽  
Elena Schelkunova ◽  
Mikhail Mikhailovsky ◽  
...  

2019 ◽  
Vol 20 (23) ◽  
pp. 6098 ◽  
Author(s):  
Amarinder Singh Thind ◽  
Kumar Parijat Tripathi ◽  
Mario Rosario Guarracino

The comparison of high throughput gene expression datasets obtained from different experimental conditions is a challenging task. It provides an opportunity to explore the cellular response to various biological events such as disease, environmental conditions, and drugs. There is a need for tools that allow the integration and analysis of such data. We developed the “RankerGUI pipeline”, a user-friendly web application for the biological community. It allows users to use various rank based statistical approaches for the comparison of full differential gene expression profiles between the same or different biological states obtained from different sources. The pipeline modules are an integration of various open-source packages, a few of which are modified for extended functionality. The main modules include rank rank hypergeometric overlap, enriched rank rank hypergeometric overlap and distance calculations. Additionally, preprocessing steps such as merging differential expression profiles of multiple independent studies can be added before running the main modules. Output plots show the strength, pattern, and trends among complete differential expression profiles. In this paper, we describe the various modules and functionalities of the developed pipeline. We also present a case study that demonstrates how the pipeline can be used for the comparison of differential expression profiles obtained from multiple platforms’ data of the Gene Expression Omnibus. Using these comparisons, we investigate gene expression patterns in kidney and lung cancers.


Sign in / Sign up

Export Citation Format

Share Document