scholarly journals Upregulation of Thrombospondin 1 Expression in Synovial Tissues and Plasma of Rheumatoid Arthritis: Role of Transforming Growth Factor-β1 toward Fibroblast-like Synovial Cells

2017 ◽  
Vol 44 (1) ◽  
pp. 131-131 ◽  
2015 ◽  
Vol 42 (6) ◽  
pp. 943-947 ◽  
Author(s):  
Takahisa Suzuki ◽  
Naoki Iwamoto ◽  
Satoshi Yamasaki ◽  
Ayako Nishino ◽  
Yoshikazu Nakashima ◽  
...  

Objective.To investigate the role of thrombospondin 1 (TSP-1) in RA.Methods.Expression of TSP-1 in synovial tissues was determined by immunohistochemistry. Expression of TSP-1 in rheumatoid fibroblast-like synovial cells (FLS) was investigated by quantitative real-time PCR and ELISA. Correlations among the plasma TSP-1 and other variables in patients with RA were examined.Results.Expression of TSP-1 was increased in rheumatoid synovial tissues. Transforming growth factor-β1 (TGF-β1) clearly increased TSP-1 expression in FLS on both mRNA and protein levels. Changes in plasma TSP-1 were associated with those in 28-joint Disease Activity Score-erythrocyte sedimentation rate and plasma TGF-β1.Conclusion.TSP-1 might be critically involved in the disease process of RA through the TGF-β1/TSP-1 axis.


2009 ◽  
Vol 69 (01) ◽  
pp. 270-275 ◽  
Author(s):  
K Warstat ◽  
M Hoberg ◽  
M Rudert ◽  
S Tsui ◽  
T Pap ◽  
...  

Objectives:In synovial tissues of patients with rheumatoid arthritis (RA), strong expression of laminins and integrins co-localises with increased expression of inflammatory cytokines. Synovial fibroblasts (SF) contribute to the pathogenesis of RA through increased expression of cytokines and chemoattractant factors, one of which is interleukin-16 (IL16). A study was undertaken to investigate the regulatory pathways of IL16 in SF from patients with RA (RA-SF) and osteoarthritis (OA-SF).Methods:SF were seeded in laminin-coated flasks and activated by the addition of cytokines. The expression of IL16 was investigated by quantitative RT-PCR, immunoblotting and ELISA; its biological activity was determined by a cell migration assay. Cell–matrix interactions were investigated by cell binding and attachment assays. Relevant intracellular signalling pathways were studied by immunoblotting and with pharmacological blocking reagents.Results:Stimulation of SF with transforming growth factor β1 (TGF-β1) and growth on laminin-111 (LM-111) significantly increased the expression of IL16. Binding to LM-111 induced significantly more IL16 mRNA in RA-SF than in OA-SF (p<0.05). The IL16 cytokine was detected in supernatants of TGF-β1-activated and in LM-111+TGF-β1-activated RA-SF (38 to 62 pg/ml), but not in supernatants of OA-SF. This IL16 regulation involved p38MAPK, ERK1/2 and SMAD2 signalling, but not NFκB.Conclusions:Binding of RA-SF to LM-111 in the presence of TGF-β1 triggers a significant IL16 response and thus may contribute to the infiltration of CD4+ lymphocytes into synovial tissues. This mode of IL16 induction represents a novel pathway leading to IL16 production in RA-SF but not in OA-SF, which operates independently of NFκB signalling.


Blood ◽  
2011 ◽  
Vol 117 (1) ◽  
pp. 246-249 ◽  
Author(s):  
Solène Evrard ◽  
Olivier Bluteau ◽  
Micheline Tulliez ◽  
Philippe Rameau ◽  
Patrick Gonin ◽  
...  

Abstract Transforming growth factor-β1 (TGF-β1) is the most important cytokine involved in the promotion of myelofibrosis. Mechanisms leading to its local activation in the bone marrow environment remain unclear. As a recent study has highlighted the role of thrombospondin-1 (TSP-1) in platelet-derived TGF-β1 activation, we investigated the role of TSP-1 in the TPOhigh murine model of myelofibrosis. Two groups of engrafted mice, WT TPOhigh and Tsp-1–null TPOhigh, were constituted. All mice developed a similar myeloproliferative syndrome and an increase in total TGF-β1 levels in the plasma and in extracellular fluids of marrow and spleen. Surprisingly, we were able to detect the active form of TGF-β1 in Tsp-1–null TPOhigh mice. Accordingly, these mice developed marrow and spleen fibrosis, with intriguingly a higher grade than in WT TPOhigh mice. Our results show that TSP-1 is not the major activator of TGF-β1 in TPO-induced myelofibrosis, suggesting the contribution of another mechanism in the megakaryocyte/platelet compartment.


Sign in / Sign up

Export Citation Format

Share Document