The Endothelial-mesenchymal Transition in Systemic Sclerosis Is Induced by Endothelin-1 and Transforming Growth Factor-β and May Be Blocked by Macitentan, a Dual Endothelin-1 Receptor Antagonist

2015 ◽  
Vol 42 (10) ◽  
pp. 1808-1816 ◽  
Author(s):  
Paola Cipriani ◽  
Paola Di Benedetto ◽  
Piero Ruscitti ◽  
Daria Capece ◽  
Francesca Zazzeroni ◽  
...  

Objective.High endothelin-1 (ET-1) and transforming growth factor-β (TGF-β) levels may induce in healthy endothelial cells (EC) an endothelial-to-mesenchymal transition (EndMT). The same cytokines are associated with fibrosis development in systemic sclerosis (SSc). Although EndMT has not been definitively shown in SSc, this process, potentially induced by a stimulatory loop involving these 2 cytokines, overexpressed in this disease might contribute to fibroblast accumulation in affected tissues. Macitentan (MAC), an ET-1 receptor antagonist interfering with this loop, might prevent EndMT and fibroblast accumulation.Methods.EC, isolated from healthy controls (HC) and patients with SSc, were treated with ET-1 and TGF-β and successively analyzed for gene and protein expressions of endothelial and mesenchymal markers, and for Sma- and Mad-related (SMAD) phosphorylation. Further, in the supernatants, we evaluated ET-1 and TGF-β production by ELISA assay. In each assay we evaluated the ability of MAC to inhibit both the TGF-β and ET-1 effects.Results.We showed that both TGF-β and ET-1 treatments induced an activation of the EndMT process in SSc-EC as reported in HC cells. The ELISA assays showed a mutual TGF-β and ET-1 induction in both SSc-EC and HC-EC. A statistically significant increase of SMAD phosphorylation after treatment was observed in SSc-EC. In each assay, MAC inhibited both TGF-β and ET-1 effects.Conclusion.Our work is the first demonstration in literature that SSc-EC, under the synergistic effect of TGF-β and ET-1, may transdifferentiate toward myofibroblasts, thus contributing to fibroblast accumulation. MAC, interfering with this process in vitro, may offer a new potential therapeutic strategy against fibrosis.

2020 ◽  
Vol 319 (4) ◽  
pp. F579-F591
Author(s):  
Noriyuki Yamashita ◽  
Tetsuro Kusaba ◽  
Tomohiro Nakata ◽  
Aya Tomita ◽  
Tomoharu Ida ◽  
...  

Tubular atrophy is a common pathological feature of kidney fibrosis. Although fibroblasts play a predominant role in tissue fibrosis, the role of repairing tubular epithelia in tubular atrophy is unclear. We demonstrated the essential role of focal adhesion kinase (FAK)-mediated intratubular epithelial-mesenchymal transition (EMT) in the pathogenesis of tubular atrophy after severe ischemia-reperfusion injury (IRI). Actively proliferating tubular epithelia undergoing intratubular EMT were noted in the acute phase of severe IRI, resulting in tubular atrophy in the chronic phase, reflecting failed tubular repair. Furthermore, FAK was phosphorylated in the tubular epithelia in the acute phase of severe IRI, and its inhibition ameliorated both tubular atrophy and interstitial fibrosis in the chronic phase after injury. In vivo clonal analysis of single-labeled proximal tubular epithelial cells after IRI using proximal tubule reporter mice revealed substantial clonal expansion after IRI, reflecting active epithelial proliferation during repair. The majority of these proliferating epithelia were located in atrophic and nonfunctional tubules, and FAK inhibition was sufficient to prevent tubular atrophy. In vitro, transforming growth factor-β induced FAK phosphorylation and an EMT phenotype, which was also prevented by FAK inhibition. In an in vitro tubular epithelia gel contraction assay, transforming growth factor-β treatment accelerated gel contraction, which was suppressed by FAK inhibition. In conclusion, injury-induced intratubular EMT is closely related to tubular atrophy in a FAK-dependent manner.


2019 ◽  
Vol 5 (1) ◽  
pp. 6-20 ◽  
Author(s):  
Jelena Čolić ◽  
Marco Matucci Cerinic ◽  
Serena Guiducci ◽  
Nemanja Damjanov

Systemic sclerosis is the main systemic fibrotic disease with unknown etiology characterized by peripheral microvascular injury, activation of immune system, and wide-spread progressive fibrosis. Microparticles can be derived from any cell type during normal cellular differentiation, senescence, and apoptosis, and also upon cellular activation. Carrying along a broad range of surface cytoplasmic and nuclear molecules of originating cells, microparticles are closely implicated in inflammation, thrombosis, angiogenesis, and immunopathogenesis. Recently, microparticles have been proposed as biomarkers of endothelial injury, which is the primary event in the genesis of tissue fibrosis. Microparticles may have a role in fostering endothelial to mesenchymal transition, thus giving a significant contribution to the development of myofibroblasts, the most important final effectors responsible for tissue fibrosis and fibroproliferative vasculopathy. Thanks to potent profibrotic mediators, such as transforming growth factor beta, platelet-derived growth factor, high mobility group box 1 protein, nicotinamide adenine dinucleotide phosphate oxidase 4, and antifibrotic agents, such as matrix metalloproteinases, microparticles may play an opposite role in fibrosis.


Sign in / Sign up

Export Citation Format

Share Document