TWO-DIMENSIONAL PIV EXPERIMENTAL INVESTIGATION OF MEAN FLOW FIELD IN STIRRED TANK WITH RUSHTON TURBINE

2004 ◽  
Vol 40 (12) ◽  
pp. 192
Author(s):  
Dianrong Gao
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Fabio Nardecchia ◽  
Annalisa Di Bernardino ◽  
Francesca Pagliaro ◽  
Paolo Monti ◽  
Giovanni Leuzzi ◽  
...  

Computational fluid dynamics (CFD) is currently used in the environmental field to simulate flow and dispersion of pollutants around buildings. However, the closure assumptions of the turbulence usually employed in CFD codes are not always physically based and adequate for all the flow regimes relating to practical applications. The starting point of this work is the performance assessment of the V2F (i.e., v2¯ − f) model implemented in Ansys Fluent for simulating the flow field in an idealized array of two-dimensional canyons. The V2F model has been used in the past to predict low-speed and wall-bounded flows, but it has never been used to simulate airflows in urban street canyons. The numerical results are validated against experimental data collected in the water channel and compared with other turbulence models incorporated in Ansys Fluent (i.e., variations of both k-ε and k-ω models and the Reynolds stress model). The results show that the V2F model provides the best prediction of the flow field for two flow regimes commonly found in urban canopies. The V2F model is also employed to quantify the air-exchange rate (ACH) for a series of two-dimensional building arrangements, such as step-up and step-down configurations, having different aspect ratios and relative heights of the buildings. The results show a clear dependence of the ACH on the latter two parameters and highlight the role played by the turbulence in the exchange of air mass, particularly important for the step-down configurations, when the ventilation associated with the mean flow is generally poor.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
A. Hildebrandt ◽  
F. Schilling

The present paper deals with the numerical and experimental investigation of the effect of return channel (RCH) dimensions of a centrifugal compressor stage on the aerodynamic performance. Three different return channel stages were investigated, two stages comprising three-dimensional (3D) return channel blades and one stage comprising two-dimensional (2D) RCH vanes. The analysis was performed regarding both the investigation of overall performance (stage efficiency, RCH total pressure loss coefficient) and detailed flow-field performance. For detailed experimental flow-field investigation at the stage exit, six circumferentially traversed three-hole probes were positioned downstream the return channel exit in order to get two-dimensional flow-field information. Additionally, static pressure wall measurements were taken at the hub and shroud pressure and suction side (SS) of the 2D and 3D return channel blades. The return channel system overall performance was calculated by measurements of the circumferentially averaged 1D flow field downstream the diffuser exit and downstream the stage exit. Dependent on the type of return channel blade, the numerical and experimental results show a significant effect on the flow field overall and detail performance. In general, satisfactory agreement between computational fluid dynamics (CFD)-prediction and test-rig measurements was achieved regarding overall and flow-field performance. In comparison with the measurements, the CFD-calculated stage performance (efficiency and pressure rise coefficient) of all the 3D-RCH stages was slightly overpredicted. Very good agreement between CFD and measurement results was found for the static pressure distribution on the RCH wall surfaces while small CFD-deviations occur in the measured flow angle at the stage exit, dependent on the turbulence model selected.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
David Demel ◽  
Mohsen Ferchichi ◽  
William D. E. Allan ◽  
Marouen Dghim

This work details an experimental investigation on the effects of the variation of flap gap and overlap sizes on the flow field in the wake of a wing-section equipped with a trailing edge Fowler flap. The airfoil was based on the NACA 0014-1.10 40/1.051 profile, and the flap was deployed with 40 deg deflection angle. Two-dimensional (2D) particle image velocimetry (PIV) measurements of the flow field in the vicinity of the main wing trailing edge and the flap region were performed for the optimal flap gap and overlap, as well as for flap gap and overlap increases of 2% and 4% chord beyond optimal, at angles of attack of 0 deg, 10 deg, and 12 deg. For all the configurations investigated, the flow over the flap was found to be fully stalled. At zero angle of attack, increasing the flap gap size was found to have minor effects on the flow field but increased flap overlap resulted in misalignment between the main wing boundary layer (BL) flow and the slot flow that forced the flow in the trailing edge region of the main wing to separate. When the angle of attack was increased to near stall conditions (at angle of attack of 12 deg), increasing the flap gap was found to energize and improve the flow in the trailing edge region of the main wing, whereas increased flap overlap further promoted flow separation on the main wing suction surface possibly steering the wing into stall.


Author(s):  
Stephen J. Wilkins ◽  
Joseph W. Hall

The unsteady flow field produced by a tandem cylinder system with the upstream cylinder yawed to the mean flow direction is investigated for upstream cylinder yaw angles from α = 60° to α = 90°. Multi-point fluctuating surface pressure and hotwire measurements were conducted at various spanwise positions on both the upstream and downstream cylinders. The results indicate that yawing the front cylinder to the mean flow direction causes the pressure and velocity spectra on the upstream and downstream cylinders to become more broadband than for a regular tandem cylinder system, and reduces the magnitude of the peak associated with the vortex-shedding. However, span-wise correlation and coherence measurements indicate that the vortex-shedding is still present and was being obscured by the enhanced three-dimensionality that the upstream yawed cylinder caused and was still present and correlated from front to back, at least for the larger yaw angles investigated. When the cylinder was yawed to α = 60°, the pressure fluctuations became extremely broadband and exhibited shorter spanwise correlation.


Author(s):  
A. Hildebrandt ◽  
F. Schilling

The present paper deals with the numerical and experimental investigation of the effect of return channel dimensions of a centrifugal compressor stage on the aerodynamic performance. Three different return channel stages were investigated, two stages comprising 3D (three-dimensional) return channel blades and one stage comprising (2D) two-dimensional RCH (Return Channel) vanes. The analysis was performed regarding both the investigation of overall performance (stage efficiency, RCH total pressure loss coefficient) and detailed flow field performance. For detailed experimental flow field investigation at the stage exit, six circumferentially traversed three-hole probes were positioned downstream the return channel exit in order to get two-dimensional flow field information. Additionally, static pressure wall measurements were taken at the hub and shroud pressure and suction side of the 2D and 3D return channel blades. The return channel system overall performance was calculated by measurements of the circumferentially averaged 1D flow field downstream the diffuser exit and downstream the stage exit. Dependent on the type of return channel blade, the numerical and experimental results show a significant effect on the flow field overall and detail performance. In general, satisfactory agreement between CFD-prediction and test-rig measurements was achieved regarding overall and flow field performance. In comparison with the measurements, the CFD calculated stage performance (efficiency and pressure rise coefficient) of all 3D-RCH stages was slightly over-predicted. Very good agreement between CFD and measurement results was found for the static pressure distribution on the RCH wall surfaces while small CFD-deviations occur in the measured flow angle at the stage exit, dependent on the turbulence model selected.


2015 ◽  
Vol 47 (2) ◽  
pp. 025501 ◽  
Author(s):  
X K Wang ◽  
G-P Niu ◽  
S-Q Yuan ◽  
J X Zheng ◽  
S K Tan

Author(s):  
Jürgen Fitschen ◽  
Alexandra Von Kameke ◽  
Sebastian Hofmann ◽  
Marko Hoffmann ◽  
Michael Schlüter

Stirred tank reactors are widely used in the chemical industry and bioprocess engineering and, consequently, a large number of scientific publications deal with the characterization of those apparatuses. However, there is very little information about the flow conditions. This is mostly due to the fact that these apparatuses are generally made of stainless steel, which restricts optical access. Furthermore, three-dimensional flow field measurements are still not trivial and involve costly equipment, therefore, investigations often reduce to two-dimensional PIV measurements. Nevertheless, recent works (Rosseburg et al., 2018; Taghavi and Moghaddas, 2020; Kuschel et al., 2021) impressively show the formation of compartments which hinder and delay mixing. However, these measurements are based either on instantaneous concentration profiles by means of pLIF measurements or on a two-dimensional projection of the system and thus do not allow conclusions about the development of the three dimensional compartments and the exchange rates between the compartments. In this work, for the first time, instantaneous flow field measurements with high spatial and temporal resolution are performed in the entire volume of a 3L stirred tank reactor based on 4D particle tracking velocimetry. The highly resolved particle trajectories further allow detailed Lagrangian analysis of the mixing dynamics inside the reactor, data that was previously inaccessible.


Author(s):  
Efe Unal ◽  
Hojin Ahn ◽  
Esra Sorguven ◽  
M. Zafer Gul

Vortex structure in a corrugated channel has been studied with a PIV system measuring two-dimensional velocity fields at different locations and Reynolds numbers. The geometry of corrugation under investigation is the two-dimensional reflection of the circular cross-sectional stainless-steel flex pipe. The results show that turbulence caused by the corrugated wall affects the whole flow field in the channel even at low Reynolds number. The bulk flow field is rather chaotic in the entire channel. Moreover, the velocity vectors show significant interaction between the flow in the groove and the bulk flow. Vortex generated from the groove is very unstable and intermittent, and the vortex is not confined within the groove even at low Reynolds number. Vortex in the groove either migrates out of the groove without breaking up, or causes bursting flow from the groove to the bulk. In addition, intermittent and time-mean flow reversals are observed near the crest of the corrugation at low Reynolds number. Though the channel design is intended to be two-dimensional, flow structures in the groove appear to be three-dimensional at high Reynolds number while two-dimensional at low Reynolds number.


2014 ◽  
Vol 660 ◽  
pp. 816-822 ◽  
Author(s):  
Bukhari Manshoor ◽  
Afifah Yusof ◽  
Suraya Laily ◽  
Izzuddin Zaman ◽  
Amir Khalid

The stirred tank is widely used in many industries to obtain the desired type of fluid mixing. In the context of mixing process, two different fluids and have a different properties will mix in a single equipment to produce another fluid with a new property. In this research, a new approach of stirred tank which is containing a new design of baffles and impellers was proposed for fluid mixing. The new design of baffles and impellers that proposed here are used a fractal pattern for both parts in the stirred tank. Implementing a fractal pattern for baffles and impellers in stirred tank believe will influence the flow characteristic inside the stirred tank, hence will improve a mixing performance. In order to investigate the kinds of flow properties, a Particle Image Velocimetry (PIV) technique with 1 μm seeding particle was used. Four configurations were tested which are normal baffles and normal impellers, normal baffles and fractal impellers, fractal baffles and normal impellers, and the last configuration is fractal baffles and fractal impellers. In this study, dual Rushton impellers with 4 blades were used with the configurations mentioned. The result shows the significant flow field capture by PIV measurement on each configuration. By using fractal impeller some vortex are shown in the tank and high velocity vector on flow field compare with normal impeller while normal baffles gives high velocity vector depends on the configuration were used. From the results, it was showed that the fractal design can give a certain level of mixing efficiency in stirred tank. The PIV technique also gives good flow visualization in order to determine the flow pattern in stirred tank with a new concept of baffles and impellers.


Sign in / Sign up

Export Citation Format

Share Document