Two-Dimensional Experimental Investigation on the Effects of a Fowler Flap Gap and Overlap Size on the Wake Flow Field

2016 ◽  
Vol 139 (2) ◽  
Author(s):  
David Demel ◽  
Mohsen Ferchichi ◽  
William D. E. Allan ◽  
Marouen Dghim

This work details an experimental investigation on the effects of the variation of flap gap and overlap sizes on the flow field in the wake of a wing-section equipped with a trailing edge Fowler flap. The airfoil was based on the NACA 0014-1.10 40/1.051 profile, and the flap was deployed with 40 deg deflection angle. Two-dimensional (2D) particle image velocimetry (PIV) measurements of the flow field in the vicinity of the main wing trailing edge and the flap region were performed for the optimal flap gap and overlap, as well as for flap gap and overlap increases of 2% and 4% chord beyond optimal, at angles of attack of 0 deg, 10 deg, and 12 deg. For all the configurations investigated, the flow over the flap was found to be fully stalled. At zero angle of attack, increasing the flap gap size was found to have minor effects on the flow field but increased flap overlap resulted in misalignment between the main wing boundary layer (BL) flow and the slot flow that forced the flow in the trailing edge region of the main wing to separate. When the angle of attack was increased to near stall conditions (at angle of attack of 12 deg), increasing the flap gap was found to energize and improve the flow in the trailing edge region of the main wing, whereas increased flap overlap further promoted flow separation on the main wing suction surface possibly steering the wing into stall.

2018 ◽  
Vol 2 ◽  
pp. JPRQQM
Author(s):  
Marcel Boerner ◽  
Martin Bitter ◽  
Reinhard Niehuis

Five-hole-probes are common use in turbomachinery flow investigations, even though, inserting a probe into a flow field inevitably induces perturbations to the flow which can falsify the measurement results, especially when exposed to transonic flows. The objective of the investigations presented here is to evaluate the Mach number measurements of a five-hole-probe (5HP) in the wake flow of a transonic turbine cascade at engine relevant Reynolds numbers by comparing them to the results of particle image velocimetry (PIV). Furthermore, PIV measurements were performed with inserted probe to investigate the influence of the probe on the wake flow field. Together with a sensitivity study of 5HP measurements in flow regimes close to Ma = 1, the results demonstrate how the measurement uncertainty can be improved in high subsonic flow regimes.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
A. Hildebrandt ◽  
F. Schilling

The present paper deals with the numerical and experimental investigation of the effect of return channel (RCH) dimensions of a centrifugal compressor stage on the aerodynamic performance. Three different return channel stages were investigated, two stages comprising three-dimensional (3D) return channel blades and one stage comprising two-dimensional (2D) RCH vanes. The analysis was performed regarding both the investigation of overall performance (stage efficiency, RCH total pressure loss coefficient) and detailed flow-field performance. For detailed experimental flow-field investigation at the stage exit, six circumferentially traversed three-hole probes were positioned downstream the return channel exit in order to get two-dimensional flow-field information. Additionally, static pressure wall measurements were taken at the hub and shroud pressure and suction side (SS) of the 2D and 3D return channel blades. The return channel system overall performance was calculated by measurements of the circumferentially averaged 1D flow field downstream the diffuser exit and downstream the stage exit. Dependent on the type of return channel blade, the numerical and experimental results show a significant effect on the flow field overall and detail performance. In general, satisfactory agreement between computational fluid dynamics (CFD)-prediction and test-rig measurements was achieved regarding overall and flow-field performance. In comparison with the measurements, the CFD-calculated stage performance (efficiency and pressure rise coefficient) of all the 3D-RCH stages was slightly overpredicted. Very good agreement between CFD and measurement results was found for the static pressure distribution on the RCH wall surfaces while small CFD-deviations occur in the measured flow angle at the stage exit, dependent on the turbulence model selected.


Author(s):  
M. R. Ahmed ◽  
G. M. Imran ◽  
S. D. Sharma

In the present paper, results from an experimental investigation of aerodynamic ground effect on two airfoils are presented. The flow characteristics over a symmetrical airfoil (NACA 0015) and a cambered airfoil (NACA 4415) were studied in a low speed wind tunnel. Experiments were carried out by varying the angle of attack from 0° to 10° and ground clearance from zero to one chord length. Pressure distribution on the surface of the airfoil was obtained with the help of pressure tappings. Mean velocity distributions were obtained over the surface of the airfoil. Profiles of mean velocity and turbulence intensity were obtained in the wake region at 0.5 and 1.0 chord length downstream of the trailing edge. It is found that pressure increases on the lower surface as the ground is approached. The flow accelerates over the airfoil, and a considerably higher mean velocity is observed near the suction peak location. For the symmetrical airfoil, the mean velocity over the surface was found to increase by nearly 30%, while for the cambered airfoil, an increase of nearly 60% was recorded for an angle of attack of 7.5°. The flow was found to separate almost near the trailing edge for angles of attack upto 10°, resulting in a thinner wake region and lower turbulence intensities for the symmetrical airfoil; while for the cambered airfoil, an early separation for an angle of attack of 10° was observed. Measurements in the wake region showed a defect in mean velocity profile at the corresponding values of ground clearance. For lower angles of attack, turbulence levels were higher in the wake region for the symmetrical airfoil, while for an angle of attack of 10°, very large defect in velocity was observed for the cambered airfoil model and the minimum velocity reduced to 20% of the freestream velocity.


Author(s):  
A. Hildebrandt ◽  
F. Schilling

The present paper deals with the numerical and experimental investigation of the effect of return channel dimensions of a centrifugal compressor stage on the aerodynamic performance. Three different return channel stages were investigated, two stages comprising 3D (three-dimensional) return channel blades and one stage comprising (2D) two-dimensional RCH (Return Channel) vanes. The analysis was performed regarding both the investigation of overall performance (stage efficiency, RCH total pressure loss coefficient) and detailed flow field performance. For detailed experimental flow field investigation at the stage exit, six circumferentially traversed three-hole probes were positioned downstream the return channel exit in order to get two-dimensional flow field information. Additionally, static pressure wall measurements were taken at the hub and shroud pressure and suction side of the 2D and 3D return channel blades. The return channel system overall performance was calculated by measurements of the circumferentially averaged 1D flow field downstream the diffuser exit and downstream the stage exit. Dependent on the type of return channel blade, the numerical and experimental results show a significant effect on the flow field overall and detail performance. In general, satisfactory agreement between CFD-prediction and test-rig measurements was achieved regarding overall and flow field performance. In comparison with the measurements, the CFD calculated stage performance (efficiency and pressure rise coefficient) of all 3D-RCH stages was slightly over-predicted. Very good agreement between CFD and measurement results was found for the static pressure distribution on the RCH wall surfaces while small CFD-deviations occur in the measured flow angle at the stage exit, dependent on the turbulence model selected.


1997 ◽  
Vol 119 (2) ◽  
pp. 214-224 ◽  
Author(s):  
M. A. Zaccaria ◽  
B. Lakshminarayana

The two-dimensional steady and unsteady flow field at midspan in a turbine rotor has been investigated experimentally using an LDV with an emphasis on the interaction of the nozzle wake with the rotor flow field. The velocity measurements are decomposed into a time-averaged velocity, a periodic velocity component, and an unresolved velocity component. The results in the rotor passage were presented in Part I. The flow field downstream of the rotor is presented in this paper. The rotor wake profiles and their decay characteristics were analyzed. Correlations are presented that match the decay of the various wake properties. The rotor wake velocity defect decays rapidly in the trailing edge region, becoming less rapid in the near and far wake regions. The rotor wake semi-wake width increases rapidly in the trailing edge region and then grows more gradually in the near and far wake regions. The decay of the maximum unresolved unsteadiness and maximum unresolved velocity cross correlations is very rapid in the trailing edge region and this trend slows in the far wake region. In the trailing edge region, the maximum periodic velocity correlations are much larger than the maximum unresolved velocity correlations. But the periodic velocity correlations decay much faster than the unresolved velocity correlations. The interactions of the nozzle and rotor wakes are also studied. While the interaction of the nozzle wake with the rotor wake does not influence the decay rate of the various wake properties, it does change the magnitude of the properties. These and other results are presented in this paper.


Author(s):  
Phillip Waniczek ◽  
Harald Schoenenborn ◽  
Peter Jeschke

The unsteady flow field during surge of the front rotor of an eight-stage axial aero engine compressor has been investigated experimentally and analytically. For that purpose, two newly designed multi-sensor probes are installed up- and downstream of the first rotor. Surge experiments are conducted at four different speed lines (75–93% speed) covering a wide range of the compressor map and measurements have been taken at two different channel heights (50% and 70% span). The results show that the flow field varies extremely during surge up- and downstream of the rotor. In contrast to the flow at the rotor leading edge, which is nearly independent of the rotor speed, the flow at the rotor trailing edge is highly dependent of the rotor speed. Therefore, the performance of the rotor during surge is dependent on the reverse through-flow of the stators. At low speeds the flow passes the stators without any changes in the flow direction. If speed is increased the reverse flow is guided more and more by the stators. These different flow conditions have a direct impact on the process of energy conversion of the rotor during the surge event. The incoming reverse flow at the rotor trailing edge impinges on the blade from the suction surface side at lower speeds and turns to the pressure surface side when speed is increased. Hence, the deviation and specific work grow. In addition to the surge experiments simulations of the surge events are conducted with a 1D code called SYSQ3D. The simulations and experiments match well and underline the capability of the new multi-sensor probes to accurately measure the flow patterns during surge.


Author(s):  
Hervé Bonnard ◽  
Ludovic Chatellier ◽  
Laurent David

An experimental study of vortex shedding on a hydrofoil Eppler 817 was conducted using two-dimensional two components Particle Image Velocimetry. This foil section’s characteristics are adapted for naval applications but sparsely documented. The characterization of the flow modes was realized based on statistical data such as the mean velocity field and the standard deviation of the vertical velocities. The data were acquired at very low Reynolds number which are not often covered for such hydrofoil and at four angles of attack ranging from 2◦ to 30◦. A map of different characteristic flow modes was made for this space of parameters and was used to identify flow configurations exhibiting particular dynamics.


Sign in / Sign up

Export Citation Format

Share Document