Response to Comments on “Reynolds number scaling of flow in a Rushton turbine stirred tank. Part I—Mean flow, circular jet and tip vortex scaling” by H. S. Yoon, D. F. Hill, S. Balachandar, R. J. Adrian and M. Y. Ha

2006 ◽  
Vol 61 (12) ◽  
pp. 4131
Author(s):  
S. Balachandar
2005 ◽  
Vol 60 (12) ◽  
pp. 3169-3183 ◽  
Author(s):  
H.S. Yoon ◽  
D.F. Hill ◽  
S. Balachandar ◽  
R.J. Adrian ◽  
M.Y. Ha

2011 ◽  
Vol 66-68 ◽  
pp. 20-26 ◽  
Author(s):  
Feng Ling Yang ◽  
Shen Jie Zhou ◽  
Gui Chao Wang

The turbulent flow in stirred tank is highly complicated and anisotropic, especially when the macro-instability (MI) are involved. In this work, the numerical simulation method of the eccentric agitation was established based on the detached eddy simulation (DES) model to study the MI in an eccentric stirred tank. The turbulent flow in the eccentrically located Rushton turbine stirred tank was numerically investigated. The rotation of the impeller was simulated by the transient sliding mesh (SM) method. The effect of eccentricity, impeller Reynolds number and impeller-tank diameter ratio were studied in order to quantify the MI frequency. PIV experiments were performed to validate the DES results and frequency analyses were applied to the obtained time series of the velocity recordings. It was found that the flow field in eccentrically stirred tank are highly unsteady and is subject to MI with varying period less than 10 blade passage period. Good agreements have been found between the DES and PIV results, both indicate that the dominant frequency of MI increases linearly with the Reynolds number, increases with the impeller-tank diameter ratio and decreases with the eccentricity. According to the agreements between the experimental and simulation results, it can be concluded that the combination of DES and SM is suitable for the prediction of the MI phenomenon in stirred tanks.


Author(s):  
Li Liangchao ◽  
Chen Ning ◽  
Xiang Kefeng ◽  
Xiang Beiping

Abstract A computational fluid dynamics (CFD) simulation was performed to study the hydrodynamics characteristics in a Rushton turbine stirred tank in laminar regime. The effects of operating condition, working medium and geometrical parameter on the flow field and power number characteristics were investigated. It is found that the two-loop flow pattern is formed in laminar regime when the impeller is not very close to tank bottom, while its shape and size vary with Reynolds number and impeller diameter. For a given geometrical configuration, the flow pattern, power number and dimensionless velocity profile are mainly depended on Reynolds number, and do not change with working medium and scale-up for a constant Reynolds number. When impeller off-bottom clearance is too low and Reynolds number is relatively high, the fluid flow would transit from two-loop flow pattern to sing-loop flow pattern as that occurs in turbulent regime. Power number falls for larger impeller in laminar regime. Surprisingly, in laminar regime, power number in the baffled tank with small impeller is almost identical to that in the unbaffled tank.


2021 ◽  
Author(s):  
Yaomin Zhao ◽  
Richard D. Sandberg

Abstract We present the first wall-resolved high-fidelity simulations of high-pressure turbine (HPT) stages at engine-relevant conditions. A series of cases have been performed to investigate the effects of varying Reynolds numbers and inlet turbulence on the aerothermal behavior of the stage. While all of the cases have similar mean pressure distribution, the cases with higher Reynolds number show larger amplitude wall shear stress and enhanced heat fluxes around the vane and rotor blades. Moreover, higher-amplitude turbulence fluctuations at the inlet enhance heat transfer on the pressure-side and induce early transition on the suction-side of the vane, although the rotor blade boundary layers are not significantly affected. In addition to the time-averaged results, phase-lock averaged statistics are also collected to characterize the evolution of the stator wakes in the rotor passages. It is shown that the stretching and deformation of the stator wakes is dominated by the mean flow shear, and their interactions with the rotor blades can significantly intensify the heat transfer on the suction side. For the first time, the recently proposed entropy analysis has been applied to phase-lock averaged flow fields, which enables a quantitative characterization of the different mechanisms responsible for the unsteady losses of the stages. The results indicate that the losses related to the evolution of the stator wakes is mainly caused by the turbulence production, i.e. the direct interaction between the wake fluctuations and the mean flow shear through the rotor passages.


Author(s):  
G. K. Batchelor

A new and fruitful theory of turbulent motion was published in 1941 by A. N. Kolmogoroff. It does not seem to be as widely known outside the U.S.S.R. as its importance warrants, and the present paper therefore describes the theory in some detail before presenting a number of extensions and making a comparison of experimental results with some of the theoretical predictions.Kolmogoroff's basic notion is that at high Reynolds number all kinds of turbulent motion, of arbitrary mean-flow characteristics, show a similar structure if attention is confined to the smallest eddies. The motion due to these eddies of limited size is conceived to be isotropic and statistically steady. Within this range of eddies we recognize two limiting processes. The influence of viscosity on the larger eddies of the range is negligible if the Reynolds number is large enough, so that their motion is determined entirely by the amount of energy which they are continually passing on to smaller eddies. This quantity of energy is the local mean energy dissipation due to turbulence. On the other hand, the smaller eddies of the range dissipate through the action of viscosity a considerable proportion of the energy which they receive, and the motion of the very smallest eddies is entirely laminar. The analytical expression of this physical picture is that the motion due to eddies less than a certain limiting size in an arbitrary field of turbulence is determined uniquely by two quantities, the viscosity and the local mean energy dissipation per unit mass of the fluid.The mathematical method of describing the motion due to eddies of a particular size is to construct correlations between the differences of parallel-velocity components at two points at an appropriate distance apart. Kinematical results analogous to those for turbulence which is isotropic in the ordinary sense are obtained, and then the scalar functions occurring in the expressions for the correlations are determined by dimensional analysis. The consequences of the theory in the case of turbulence which possesses ordinary isotropy are analysed and various predictions are made. One of these, namely that dimensionless ratios of moments of the probability distribution of the rate of extension of the fluid in any direction are universal constants, is confirmed by recent experiments, so far as the second and third moments are concerned. In several other cases it can be said that relations predicted by the theory have the correct form, but further experiments at Reynolds numbers higher than those hitherto used will be required before the theory can be regarded as fully confirmed. If valid, Kolmogoroff's theory of locally isotropic turbulence will provide a powerful tool for the analysis of problems of non-uniform turbulent flow, and for the determination of statistical characteristics of space and time derivatives of quantities influenced by the turbulence.


Sign in / Sign up

Export Citation Format

Share Document